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Abstract

Tests for pre-existing trends (“pre-trends”) are a common way of assessing the plau-
sibility of the parallel trends assumption in difference-in-differences and related research
designs. This paper highlights some important limitations of pre-trends testing. From
a theoretical perspective, I analyze the distribution of conventional estimates and con-
fidence intervals conditional on surviving a pre-test for pre-trends. I show that in non-
pathological cases, the bias of conventional estimates conditional on passing a pre-test
can be worse than the unconditional bias. Thus, pre-tests meant to mitigate bias and
coverage issues in published work can in fact exacerbate them. I empirically investigate
the practical relevance of these concerns in simulations based on a systematic review
of recent papers in leading economics journals. I find that conventional pre-tests are
often underpowered against plausible violations of parallel trends that produce bias of
a similar magnitude as the estimated treatment effect. Distortions from pre-testing can
also be substantial. Finally, I discuss alternative approaches that can improve upon the
standard practice of relying on pre-trends testing.

1 Introduction

When using difference-in-differences or related research designs, researchers commonly test
for pre-treatment differences in trends (“pre-trends”) between the treated and control units
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as a way of assessing the plausibility of the parallel trends assumption. These tests are
remarkably common: based on my review, over 70 recent papers in the journals of the
American Economic Association have employed an “event-study plot” to visually test for
pre-trends.

This paper provides theoretical and empirical evidence on the limitations of pre-trends
testing. From a theoretical perspective, I analyze the distribution of conventional estimates
and confidence intervals (CIs) after surviving a test for pre-trends. In non-pathological
cases, bias and coverage rates of conventional estimates and CIs can be worse conditional on
passing the pre-test. Empirically, I conduct a systematic review of recent papers in leading
economics journals that test for pre-trends. Simulations based on these papers suggest
that the theoretical concerns about pre-trends testing are relevant in practice: the power of
conventional pre-tests is often low, and substantial distortions from pre-testing are possible.
Finally, I discuss alternative approaches that can improve upon the standard practice of
pre-trends testing.

I begin in Section 2 with a stylized model to illustrate the intuition for the limitations of
pre-trends testing. I consider a difference-in-differences setting with three periods in which
there are normal, homoskedastic errors and potentially linear violations of parallel trends.
Even when parallel trends is violated, some draws of the data nonetheless “survive” the
test for pre-trends. Moreover, these surviving draws have bias that is worse than would be
expected based on the difference in trends alone. The intuition for this is that noise in the
data that masks the pre-existing trend also exacerbates bias in the treatment effect estimate
because of a mean-reversion effect. An implication of this result is that publication rules
that require insignificant pre-trends may or may not reduce bias in published work. Whether
they do so will depend on the latent distribution of biases in studies that researchers consider
for publication, as well as the power of the pre-test against relevant alternatives. Similar
results apply to the coverage rates of conventional CIs.

Section 3 provides a more general theoretical treatment of the distribution of event-study
estimates after surviving a pre-test for pre-trends.1 I derive formulas for the bias and variance
of conventional estimates after pre-testing. In general, the bias after surviving a pre-test can
be larger or smaller than the unconditional bias. I prove, however, that the bias after pre-
testing is necessarily larger in settings with homoskedastic errors and monotone differences
in trends. Thus, pre-testing can exacerbate bias in non-pathological cases. I also show under
quite general conditions that the variance of conventional estimates is lower conditional on

1Throughout the paper, I use the phrase “event-study” to refer to a large class of specifications that
estimate dynamic treatment effects along with placebo pre-treatment effects. This includes, but is not
limited to, settings with staggered treatment timing; see Related Literature and Remark 2.
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passing the pre-test. As a result, traditional CIs will tend to over-cover conditional on passing
the pre-test when bias is small, but will generally under-cover as the bias grows larger.

Section 4 evaluates the practical relevance of these theoretical concerns in data-generating
processes calibrated based on a systematic review of recent papers in three leading economics
journals (the American Economic Review, AEJ: Applied Economics, and AEJ: Economic
Policy). Although other recent papers have cautioned that pre-trends tests may have low
power (Freyaldenhoven et al., 2019; Kahn-Lang and Lang, 2018; Bilinski and Hatfield, 2018),
I provide the first systematic evaluation of the power of pre-trends tests in published papers.
I find that, indeed, conventional pre-trends tests often have low power against meaningful
violations of parallel trends. In many cases, linear violations against which conventional tests
have power of only 50 percent would produce bias of a magnitude similar to the estimated
treatment effect. Under such violations of parallel trends, conventional 95% CIs fail to
include the average post-treatment effect approximately half of the time in the median paper.
Although homoskedasticity does not typically hold in practice, the bias conditional on failing
to detect an underlying trend is nonetheless worse than the unconditional bias in the large
majority of cases, in line with the theoretical prediction for the homoskedastic case. This
bias amplification can be substantial in magnitude: in some cases, the bias conditional on
passing the pre-test is more than twice as large as the unconditional bias.

Finally, I consider different approaches for improving upon the current practice of relying
on pre-trends testing in Section 5. I first consider parametric approaches, which extrapolate
the pre-treatment difference in trends to the post-treatment periods via a functional form
assumption. The advantage of these approaches is that they give valid causal estimates and
CIs without pre-testing, provided that the functional form assumption is correct. Although
off-the-shelf parametric approaches are not valid conditional on passing a pre-test, I show in
Appendix B that these parametric approaches can be combined with corrections for publi-
cation bias developed in Andrews and Kasy (2019) to obtain valid estimation and inference
following a pre-testing step. This modified parametric approach can be used for retrospective
analysis of studies that have been selected on the basis of pre-trends testing.

Unfortunately, however, researchers are often unsure about the correct functional form
for the differential trend (Wolfers, 2006; Lee and Solon, 2011). I therefore next turn my
attention to two methods that relax the exact parallel trends assumption in different ways.
One approach is that of Freyaldenhoven et al. (2019), who allow for parallel trends to be
violated so long as there is an excluded covariate that is assumed to be affected by the same
confounding factors as the outcome but unaffected by the treatment. A second approach is
that of Rambachan and Roth (2019), who provide methods for valid causal inference under
assumptions about how informative the true pre-existing trends are about the counterfactual
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post-treatment differences in trends. They formalize these assumptions via restrictions on
the smoothness of the possible violations of parallel trends, and recommend conducting
sensitivity analysis with respect to these assumptions. Both of these approaches enable one
to obtain valid causal inference over certain classes of violations of parallel trends without
conducting pre-tests, thus avoiding the issues with pre-testing discussed in this paper.

Each of these three alternative approaches can be viewed as imposing certain assumptions
about the possible ways in which the parallel trends assumption may be violated. Which
method to use thus depends on what assumptions are reasonable in a particular economic
context; I provide recommendations for choosing between the methods in Section 5.3. Re-
gardless of the context, I encourage researchers to be explicit about their assumptions about
how parallel trends may be violated, and to subject these assumptions to scrutiny given
economic knowledge. Incorporating economic knowledge, rather than relying on the statis-
tical significance of pre-trends tests, will improve the credibility and clarity of science in
difference-in-differences and related research designs.

Related Literature. This paper relates to a large literature in econometrics and statistics
showing that problems can arise in a variety of contexts if researchers do not account for
a pre-testing or model selection step (see, e.g., Giles and Giles (1993), Leeb and Pötscher
(2005), Lee et al. (2016), and references therein). Recent work has examined, for instance,
the implications of pre-testing for weak identification (Andrews, 2018), choosing between
OLS and IV specifications on the basis of a pre-test (Guggenberger, 2010), using data-driven
tuning parameters (Armstrong and Kolesár, 2018), and model selection in high-dimensional
settings (Belloni et al., 2014; Farrell, 2015; Belloni et al., 2017). I show theoretically and
empirically that similar issues arise with the common practice of testing for pre-trends in
difference-in-differences and related research designs.

This paper also contributes to a large body of work on the econometrics of difference-in-
differences and related research designs in particular. A topic of substantial recent interest
has been the failure of standard two-way fixed effect models to recover a sensible causal
estimand in settings with staggered treatment timing and heterogenous treatment effects,
even under a suitable parallel trends assumption (Borusyak and Jaravel, 2016; Abraham and
Sun, 2018; Athey and Imbens, 2018; de Chaisemartin and D’Haultfœuille, 2018; Goodman-
Bacon, 2019; Callaway and Sant’Anna, 2019). For expositional clarity, the main theoretical
focus of this paper is on the failures of pre-trends testing in the simpler setting with non-
staggered treatment timing or homogenous treatment effects, although the concerns raised
apply to the staggered case with heterogeneity as well; see Remark 2 for further discussion.
Most closely related to the current paper, recent papers by Freyaldenhoven et al. (2019),

4



Kahn-Lang and Lang (2018), and Bilinski and Hatfield (2018) have warned that traditional
pre-tests may have low power to detect meaningful violations of parallel trends. I contribute
to this literature in three ways. First, I characterize the distribution of treatment effects
estimates conditional on having survived a pre-test for parallel trends, and show that pre-
testing need not necessarily reduce bias and coverage issues from violations of parallel trends.2

Second, I provide the first systematic empirical evaluation of the power of pre-trends tests
and the distortions from pre-trends testing in published work. Finally, I discuss alternatives
to pre-testing and provide concrete recommendations for researchers.

Lastly, this paper relates to the literature on selective publication of scientific results
(Rothstein et al. (2005) and Christensen and Miguel (2016) provide reviews). A particularly
relevant paper on selective publication is Snyder and Zhuo (2018), who provide empirical
evidence that papers with significant placebo coefficients – which they refer to as “sniff tests”
– are less likely to be published. I study tests for pre-trends, a common form of sniff test,
and provide theoretical and empirical results on the limitations of these tests in reducing
bias and coverage issues. I also build on work by Andrews and Kasy (2019) on correcting
for publication bias, as well as earlier results from Lee et al. (2016) and Pfanzagl (1994), to
develop corrections to standard parametric methods that have good properties conditional
on passing a pre-test for pre-trends.

2 Stylized Model

This section develops intuition for the limitations of pre-trends testing in a stylized model
with three periods, homoskedastic errors, and (potentially) linear violations of parallel trends.

2.1 Stylized model set-up

Suppose that we observe an outcome yit for individuals i in period t for three periods t =

−1, 0, 1. Individuals in the treatment group (Di = 1) receive a treatment of interest between
periods 0 and 1, whereas individuals in the control group (Di = 0) do not receive the
treatment. We denote by yit(1) and yit(0) the potential outcomes for individual i in period t
that would have occurred if they respectively did or did not receive treatment. The observed
outcome can then be written as yit = Diyit(1) + (1 −Di)yit(0). For simplicity, we consider
the case where there is no causal effect of treatment, i.e. yit(1) ≡ yit(0), and the true

2Relatedly, Daw and Hatfield (2018) and Chabé-Ferret (2015) illustrate that selecting a control group on
the basis of pre-period outcomes can induce bias in difference-in-differences.
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data-generating process for yit(0) is given by

yit(0) = αi + φt +Di × g(t) + εit, (1)

where εit
iid∼ N (0, σ2

ε ). The term Di×g(t) represents a potential difference in trends between
the treatment and control group. For instance, if g(t) = t, then the average outcome for the
treatment group is increasing linearly relative to the control group, whereas if g(t) = 0 then
the parallel trends assumption holds.

We suppose that the researcher estimates the “event-study” difference-in-differences re-
gression specification

yit = αi + φt +
∑
s6=0

βs × 1[s = t]×Di + εit. (2)

The estimate β̂1 is the canonical difference-in-differences treatment effect estimate,

β̂1 = ∆ȳt=1 −∆ȳt=0,

where ∆ȳt is the difference in sample means between the treatment and control group in
period t. Likewise, the estimate β̂−1 is the canonical pre-period event-study coefficient,

β̂−1 = ∆ȳt=−1 −∆ȳt=0.

An important observation is that the term ∆ȳt=0, the estimated difference in means between
treatment and control in the reference period (t = 0), enters the expression for both the
pre-period and post-period coefficients. As a result, if we select on the observed pre-period
coefficient β̂−1 being close to zero, this will affect the distribution of ∆ȳt=0, which in turn
will impact the distribution of β̂1. The next section illustrates how this selection plays out
in detail.

2.2 Conventional estimates and CIs after pre-testing

We now analyze the performance of the point estimates and CIs for β̂1 under the data-
generating process described above. For simplicity, we focus on linear violations of parallel
trends, g(t) = γ · t, and vary the slope of the difference in trends γ. We choose the number
of observations N and variance σ2

ε so that Var
[
β̂1

]
= Var

[
β̂−1

]
= 1.3 We then analyze

the properties of traditional point estimates and CIs both unconditionally, and conditional

3Note that Var
[
β̂1

]
=

4σ2
ε

N , and likewise for β̂−1, so the variance depends only on the ratio of σ2
ε and N .
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on surviving a pre-test for the null hypothesis that β−1 is equal to 0 at the 95% level. The
results of this exercise are summarized in Figure 1.

Power of pre-testing. The top left panel of Figure 1 shows the probability that we “pass”
the pre-test, i.e. that we do not find a significant pre-period coefficient β̂−1 at the 95% level.
Naturally, we fail to find a significant pre-period coefficient 95% of the time when parallel
trends holds (γ = 0). Note, however, that we also do not find a significant pre-trend in a
substantial fraction of cases for certain violations of parallel trends. Consider, for instance,
the case when γ = 2, so that the mean of β̂−1 is two standard errors below 0. We will fail to
reject the null if β̂−1 is within 2 standard errors of 0, which occurs if β̂−1 is between 0 and 4
standard errors above its mean. This occurs with probability Φ(4)−Φ(0) ≈ 0.5, so we pass
the pre-test about half the time when the magnitude of γ is twice the standard error of β̂−1.

Bias. The top right panel of Figure 1 shows the bias of β̂1 for the treatment effect in period
1. When we do not condition on the result of the pre-test, by construction the bias is just
the slope of the differential trend, γ, which is shown in black. In blue, we plot the bias
of β̂1 in realizations of the data in which we do not detect a significant pre-trend. We see
that when parallel trends is violated, the bias conditional on passing the pre-test is larger
than the unconditional bias; that is, the realizations of the data in which we fail to detect
a violation of parallel trends tend to produce estimates β̂1 that are more biased than would
be expected based on the differential trend of slope γ alone.

To understand the intuition for this bias exacerbation, consider Figure 2. The left panel
shows realizations of ∆ȳt, the difference in sample means between the treated and control
group in period t, simulated from our DGP when γ = 3. Note that the slope of the line
between period 0 and period 1 corresponds with the magnitude of the pre-period coefficient
β̂−1, whereas the slope between period 0 and period 1 corresponds with β̂1. Highlighted
in blue are the draws of the data in which we do not detect a significant pre-trend. By
construction, these blue lines have small slopes between period -1 and period 0, corresponding
with small values of β̂−1. Note, however, that these blue lines also tend to have larger slopes
between period 0 and period 1, corresponding with more biased realizations of β̂1. (The right
panel of the figure shows the average over 1 million draws.) This is because the blue draws
of the data tend to have below-average values of ∆ȳt=0, since negative shocks in period 0
“flatten” out the observed slope in the pre-period. Owing to a mean-reversion effect, there
is then a larger change between period 0 and period 1, leading these insignificant draws of
the data to be particularly biased for the treatment effect in period 1.4

4Daw and Hatfield (2018) show that a similar mean-reversion effect can produce bias when creating a
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Figure 1: Probability Pass Pre-test, and Bias, Variance, and Coverage of OLS Treatment
Effect Estimates Under Linear Violations of Parallel Trends

Note: This figure shows the performance of the OLS treatment effect estimate under linear violations of
parallel trends, both unconditionally and conditional on not detecting a significant pre-trend at the 5%
level. The top left panel shows the probability of passing the pre-test; the top right and bottom left panels
respectively show the bias and variance of β̂1. The bottom right panel shows the coverage of the treatment
effect for a nominal 95% interval.
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Figure 2: Intuition for how bias is worse conditional on not detecting a significant pre-trend

Note: The left panel of the figure shows simulated draws from a DGP in which in population the outcome
of interest for the treatment group is increasing linearly relative to the control group. The y-axis shows the
difference in sample means between the treatment and control group in each period (∆ȳt). I highlight in
blue the draws of the data in which the pre-period coefficient β̂−1 is insignificant at the 95% level. The right
panel shows the average of the blue lines over 1 million draws.

Variance. The bottom left panel of Figure 1 shows the variance of β̂1, both unconditionally
and conditional on passing the pre-test. We see that the variance of β̂1 is lower conditional
on passing the pre-test for all values of γ. The intuition for this is that β̂1 = ∆ȳt=1−∆ȳt=0,
and conditioning on passing the pre-test tends to reduce the variance of ∆ȳt=0. This can
be seen, for instance, in the left panel of Figure 2, in which the blue dots at t = 0 are
substantially less dispersed than the gray triangles.

Coverage of CIs. The bottom right panel of Figure 1 plots the rate at which traditional
CIs for β̂1 cover the treatment effect. The unconditional coverage rate starts at the nominal
95% level when parallel trends holds (γ = 0), but declines as γ increases because of the
bias from the differential trend. Owing to the symmetry of our stylized example between
period -1 and period 1, the unconditional coverage rate is identical to the probability of
passing the pre-test. Thus, under the slope γ for which we detect a pre-trend only half the
time, a conventional 95% CI would (unconditionally) reject the true treatment effect half the
time. The coverage rates conditional on passing the pre-test start out slightly higher than
the nominal coverage rate (96% under parallel trends), but can be substantially lower than

control group based on matching on pre-period outcomes, rather than pre-testing for significance.
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the unconditional coverage rates for larger violations of parallel trends. This is a result of
a trade-off between two effects: on the one hand, the variance of β̂1 is smaller conditional
on passing the pre-test; on the other, pre-testing introduces additional bias when parallel
trends is violated. Conditional on surviving the pre-test, conventional CIs thus over-cover for
values of γ close to zero, where the variance effect dominates, but substantially undercover
for larger values of γ, for which bias dominates.

2.3 Implications of publication rules that require pre-testing

So far, we have evaluated the implications of pre-testing on the performance of conventional
estimates and CIs for fixed values of γ. We now extend the baseline model to understand
the implications of these results for publication regimes in an environment where researchers
try many different studies, and parallel trends is satisfied in some of these but not others.
Intuitively, when we require an insignificant pre-trend to publish, there is a tradeoff between
two effects. First, requiring an insignificant pre-trend increases the fraction of published
studies in which parallel trends holds (γ = 0). Second, pre-testing affects the distribution of
estimates that survive for any given violation of parallel trends. As shown in the previous
section, bias and coverage rates may be worse conditional on passing the pre-test for a fixed
value of γ.

To clarify these tradeoffs more formally, we consider a simple extension to the stylized
model in which parallel trends holds in fraction 1− θ of latent studies, and in fraction θ of
latent studies there is a linear violation of parallel trends with slope γ̄ > 0. If we did not test
for parallel trends and published everything, the expected bias in published studies would
be:

BiasNo test = P (γ = γ̄)γ̄ = θγ̄.

Likewise, if we only accept studies that pass the pre-test, the bias in published studies is:

BiasTest = P (γ = γ̄ |Accept)E [bias | γ = γ̄, Accept] .

The ratio of biases across the two regimes is then:

BiasTest

BiasNotest
=
P (γ = γ̄ |Accept)

P (γ = γ̄)︸ ︷︷ ︸
Relative fraction of
studies with biased
design (≤ 1)

· E [bias | γ = γ̄, Accept]

γ̄︸ ︷︷ ︸
Ratio of bias when accept
biased design (≥ 1)

. (3)
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Equation (3) makes clear the tradeoffs involved in requiring an insignificant pre-trend to
publish. The first term represents the relative fraction of published studies with a biased
design (γ = γ̄) across the two regimes. Pre-testing makes us relatively more likely to accept
a study where parallel trends holds, so this term will tend to be less than 1. However, the
second term represents the ratio of biases in the published studies where parallel trends does
not hold in population. As demonstrated in Section 2.2, in our simple model this bias is
worse conditional on surviving the pre-test, so the second term will be greater than 1.

The bias under the pre-testing regime will tend to be worse when either the fraction of
latent studies with a biased design (θ) is high, or if the pre-test has low power. To see why
this is the case, using Bayes’ rule we can re-write the first term in (3) as:

1

θ + (1− θ)BF
(4)

where
BF :=

P (Accept|γ = 0)

P (Accept|γ = γ̄)

is the Bayes factor, i.e. the ratio of the likelihood of finding an insignificant pre-trend when
parallel trends holds relative to when it is violated. The pre-testing regime will tend to
have larger bias when the expression in (4) is close to 1. This will occur if θ is close to 1,
meaning that a high fraction of latent research designs are biased, or if the Bayes Factor is
close to 1, meaning that the pre-test has low power. These dynamics are captured in Figure
3, which shows the (mean) bias in published studies as a function of θ for γ̄ = 1 and γ̄ = 3,
which correspond with Bayes factors of 1.1 and 6.4. When γ̄ = 1 and the Bayes factor is
small, we see that requiring an insignificant pre-test to publish leads to weakly larger bias
in published work for all values of θ, with the pre-testing regime doing substantially worse
when θ is large. For γ̄ = 3, where the pre-test is better powered, we see that requiring an
insignificant pre-test to publish can substantially reduce bias for lower values of θ, but will
nonetheless exacerbate bias if θ is sufficiently large.

Appendix Figure D1 shows the analogous results for size control in published work, rather
than bias. Again, the pre-testing publication regime may be ineffective in controlling size,
with size contol in published work substantially exceeding the nominal level of 5% for many
parameter values. The pre-testing regime can even produce worse results than accepting all
papers if the pre-test is sufficiently underpowered or the fraction of latent biased studies is
high.

An implication of this section is that requiring insignificant pre-trends to publish need not
necessarily be effective in reducing bias or controlling size in published work. Indeed, if the
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Figure 3: Comparing bias in published studies when requiring an insignificant pre-trend
versus publishing everything

Note: Each figure shows the (mean) bias in published work in the setting described in Section 2.3 as a
function of the fraction of latent studies in which parallel trends is violated (θ). The Insignificant Pre-trend
regime only publishes studies in which β̂−1 is statistically insignificant. The two panels show results for
different values of the slope of the differential trend (γ) when parallel trends fails. See Section 2.3 for further
detail.

pre-test is underpowered or if a high fraction of latent research designs are biased, requiring
pre-testing may even exacerbate these issues. These results should make researchers cautious
of relying solely on the significance of pre-tests, unless they have context-specific knowledge
about the power of the pre-test against the relevant alternatives or the latent credibility of
the research design.

3 Theory: Pre-testing in a more general model

Section 2 considered the performance of conventional treatment effects estimates after pre-
testing in a stylized setting with 3 periods, i.i.d. shocks to the outcome across periods, and
linear violations of parallel trends. This section formalizes the intuition from Section 2 and
extends the analysis to allow for additional periods, more complicated covariance structures,
and non-linear violations of parallel trends.
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3.1 Model

I consider a setting where the researcher observes a vector of pre-period and post-period
coefficients that is jointly normally distributed with known variance:(

β̂post

β̂pre

)
∼ N

((
βpost

βpre

)
,

(
Σ11 Σ12

Σ21 Σ22

))
. (5)

I denote byK the dimension of the pre-period coefficient vector β̂pre, and byM the dimension
of the post-period coefficients β̂post. For ease of notation, I will consider the case where
M = 1 unless noted otherwise; all of the results forM = 1 will then apply to each individual
post-period coefficient (or linear combinations thereof) in the case when M > 1.

We decompose the population mean as(
βpost

βpre

)
=

(
τpost

0

)
+

(
δpost

δpre

)
, (6)

where τpost is the true causal parameter of interest, and δ represents the (unconditional) bias
in conventional estimates from an underlying trend. For instance, in the example in Section
2.2, the true treatment effect was τpost = 0, but the researcher estimating regression (2)
would have bias from the underlying trend given by (δpost, δpre) = (γ,−γ). If parallel trends
holds, then δ = 0. We assume that the treatment of interest has no causal effect prior to its
implementation, so that βpre = δpre.

I will analyze the properties of the distribution of β̂post conditional on a pre-test based
on the pre-period coefficients – i.e. conditional on the event that β̂pre ∈ B for some set
B. For instance, researchers often test to see whether any of the pre-period coefficients is
individually statistically significant at the 5% level, which is captured by the event β̂pre ∈
BNIS := {β̂pre : |β̂pre,j|/

√
Σjj ≤ 1.96 for all j}.

Remark 1. The finite-sample normal model specified above will hold exactly if we assume
normal errors, as in the example in Section 2, but can more reasonably be thought of as an
asymptotic approximation, since a wide variety of estimation procedures will yield asymp-
totically normal coefficients via the central limit theorem. For instance, the traditional
two-way fixed effects model (2) will lead to asymptotically normal coefficients as N grows
large under mild regularity conditions. Other procedures, such as the GMM estimator pro-
posed by Freyaldenhoven et al. (2019), will also have an asymptotically normal distribution
under suitable regularity conditions, and thus the results here can also be used to analyze
the asymptotic distribution of treatment effects estimates conditional on not finding signif-
icant pre-period placebo coefficients in these models as well. Appendix C shows that the
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results derived in the finite sample normal model hold uniformly over a wide range of data-
generating processes under which the probability of passing the pre-test does not disappear
asymptotically.5 �

Remark 2. An active recent literature has examined the interpretation of the coefficients
βpre and βpost from the two-way fixed effects regression (2) when there is staggered adoption
of treatment timing (Abraham and Sun, 2018; Borusyak and Jaravel, 2016; Callaway and
Sant’Anna, 2019).6 The results in Abraham and Sun (2018) imply that the coefficients βpre
and βpost may not have a sensible interpretation if there is treatment effect heterogeneity,
even under a strong generalization of the parallel trends assumption to the staggered timing
case. Specifically, they show that there may be pollution across lags, such that βpre may be
non-zero even if parallel trends holds, and the coefficient βt for t > 0 may be affected by
treatment effects in periods other than t. On the other hand, their results suggest that if
cohorts that adopt treatment at different times have the same dynamic path of treatment
effects, then the coefficients β can sensibly be decomposed as in (6), where τpost is the dynamic
profile of treatment effects and δpre 6= 0 only if parallel trends is violated in the pre-period.

Moreover, Abraham and Sun (2018) and Callaway and Sant’Anna (2019) propose alter-
native estimators that have sensible interpretations as weighted averages of causal effects
at a particular lag since treatment even under heterogeneous treatment effects. These es-
timators can be used to construct estimates of dynamic causal effects, as well as placebo
pre-treatment estimates. Since these estimators yield asymptotically normal coefficients un-
der suitable regular conditions, the results here can also be used to analyze the asymptotic
distribution of those estimates following a pre-test of these placebo coefficients. �

3.2 Bias After Pre-testing

I begin by analyzing the bias of β̂post for τpost conditional on passing the pre-test. The
following result, which follows from standard arguments using the conditional distributions
of multivariate normals, provides a formula for the conditional bias.

Proposition 3.1. For any conditioning set B,
5The condition that the probability of passing the pre-test does not disappear asymptotically requires

that the pre-period trend δpre be shrinking with the sample size. This local-to-0 approximation captures the
fact that in finite samples the pre-trend may be of a similar order of magnitude as the sampling uncertainty
in the data. In a model with fixed δpre, the probability of rejecting the pre-test would be either 0 or 1
asymptotically, which does not capture the fact that in practice we are often uncertain whether the pre-
trend is zero or not.

6Relatedly, several other recent papers focus on the interpretation of “static” specifications with only a
post-treatment indicator, rather than leads and lags of treatment timing. See the Related Literature section
for references.
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E
[
β̂post | β̂pre ∈ B

]
= τpost + δpost + Σ12Σ−1

22

(
E
[
β̂pre | β̂pre ∈ B

]
− βpre

)
.

The formula in Proposition 3.1 illustrates that the expectation of β̂post conditional on passing
the pre-test is the sum of i) the treatment effect of interest τpost, ii) the unconditional bias
δpost, and iii) an additional “pre-test bias” term, which depends on the distortion to the
mean of the pre-period coefficients from pre-testing, as well as on the normalized covariance
between the pre-period and post-period coefficients.

3.2.1 Sufficient conditions for bias exacerbation

In the stylized example in Section 2, we saw that the bias of β̂post for τpost was worse condi-
tional on passing the pre-test when there were linear violations of parallel trends. We now
show that this result extends to arbitrary monotone violations of parallel trends under cer-
tain restrictions on the covariance matrix. These restrictions follow from a homoskedasticity
assumption in the general case with multiple periods.

We introduce the following restrictions on the covariance matrix, which depend on the
number of pre-treatment coefficients, K.

Assumption 1. Σ satisfies the following restrictions:

1. If K = 1, then we assume that Σ12 = Cov
(
β̂pre, β̂post

)
> 0.

2. If K > 1, we assume that Σ has a common term σ2 on the diagonal and a common
term ρ > 0 off of the diagonal, with σ2 > ρ.

Remark 3. With one pre-treatment period, Assumption 1 imposes only that the pre-period
coefficient β̂pre has positive covariance with the treatment effect estimate β̂post. Although
in practice having only one pre-period may be rare, when there are multiple pre-periods
researchers may test for a pre-trend using a parametric linear trend, such as

yit = αi + φt + βtrend × t×Di +
∑
s>0

βs × 1[s = t]×Di + εit. (7)

In this case, testing the significance of β̂trend is equivalent to testing a one-dimensional pre-
period coefficient. Assumption 1 thus will apply whenever the coefficient β̂trend is positively
correlated with the estimate for a post-treatment coefficient of interest (e.g., β̂1). �

Remark 4. With multiple pre-treatment periods, Assumption 1 is implied by a suitable
homoskedasticity assumption in the canonical two-way fixed effects difference-in-differences
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model. To see this, suppose that the data is generated from the model

yit = αi + φt +
∑
s 6=0

βs︸︷︷︸
τs+δs

×Di + εit.

If the researcher estimates regression (2), then the estimated coefficients will be given by

β̂s = βs + ∆ε̄s −∆ε̄0,

where ∆ε̄t is the difference in the average residuals for the treatment and control groups in
period t. It follows that Cov

(
β̂j, β̂k

)
= Cov (∆ε̄j −∆ε̄0,∆ε̄k −∆ε̄0). Hence, Assumption 1

will hold if ∆ε̄t is iid across time, since we will have Var
[
β̂k

]
= 2σ2 and Cov(β̂k, β̂j) = σ2 for

σ2 := Var [∆ε̄t]. A sufficient condition for ∆ε̄t to be iid across time is for the individual-level
errors εit to be iid. �

We now show that under Assumption 1, the bias after testing for significant pre-treatment
coefficients is worse than the unconditional bias under arbitrary monotone violations of
parallel trends.

Proposition 3.2 (Sign of bias under monotone trend). Suppose that there is an upward
pre-trend in the sense that δpre < 0 (elementwise) and δpost > 0.7 If Assumption 1 holds,
then

E
[
β̂post | β̂pre ∈ BNIS

]
> βpost > τpost.

The analogous result holds replacing ">" with "<" and vice versa.

Remark 5. In many difference-in-differences settings, researchers are worried that treatment
may be correlated with ongoing secular economic trends, in which case the monotonicity of δ
may be a reasonable assumption. Several recent papers suggest that any violations of parallel
trends would be monotone. For instance, Lovenheim and Willen (2019) argue that violations
of parallel trends cannot explain their results because “pre-[treatment] trends are either zero
or in the wrong direction (i.e., opposite to the direction of the treatment effect).” Likewise,
Greenstone and Hanna (2014) estimate upward-sloping pre-existing trends and argue that
their estimates would be upward biased “if the pre-trends had continued.” Nonetheless, there
are economic settings in which we do not expect monotonicity to hold, with the so-called

7Recall that specifications such as (2) implicitly normalize δ0 = 0. Thus, if the difference in trends
is monotonically increasing, i.e. δ−K ≤ ... ≤ δ0 = 0 ≤ ... ≤ δM , then the restrictions on δ imposed by
Proposition 3.2 hold. Note, however, that the restriction that δpre < 0 and δpost > 0 is actually somewhat
weaker than monotonicity. It allows, for instance, for δ−3 > δ−2, so long as both are less than 0.
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Ashenfelter’s dip expected in job-training programs as a notable example (Ashenfelter, 1978).
�

Remark 6. The homoskedasticity assumption required to obtain the bias exacerbation in
Proposition 3.2 is of course strong and unlikely to hold in most practical applications. One
can construct examples using a covariance matrix that violates Assumption 1 in which the
conditional bias is less than the unconditional bias, so there is no universal guarantee that
the bias is exacerbated with arbitrary covariance structures. Nonetheless, the fact that bias
is exacerbated under homoskedasticty and arbitrary monotone violations of parallel trends
indicates that pre-testing can exacerbate bias in non-pathological cases.

Moreover, it is straightforward to calculate whether pre-testing will exacerbate bias for
any particular underlying trend and covariance matrix using the formula in Proposition 3.1.
In Section 4, I apply this approach to calculate the pre-test bias under linear violations
of parallel trends in a sample of recently published papers. I show that although in prac-
tice homoskedasticity typically does not hold, in most published papers the pre-test bias
nonetheless goes in the same direction as the underlying trend. �

Remark 7. Another limitation of the result in Proposition 3.2 is that the result applies
only to the pre-test that no individual coefficient is statistically significant, as opposed to
an arbitrary pre-test. It seems likely that similar results may be available for tests of joint
significance using the results on elliptically-truncated normal distributions from Tallis (1963)
and Arismendi Zambrano and Broda (2016), although I leave this to future work. �

3.2.2 Unbiasedness after pre-testing when parallel trends holds

In the simple example in Section 2, we saw that when parallel trends was satisfied, β̂post
remained unbiased for the treatment effect conditional on not finding a significant pre-trend.
From Proposition 3.1, we see that β̂post is conditionally unbiased for τpost if δpost = 0 and
E
[
β̂pre | β̂pre ∈ B

]
= βpre. One can show that if δpre = 0, then E

[
β̂pre | β̂pre ∈ B

]
= βpre

provided that the pre-test B is symmetric in the sense that we reject the hypothesis of
parallel pre-trends for β̂pre if and only if we reject the hypothesis for −β̂pre, a property which
holds for any two-sided test of significance. It follows that, as in the simple example, β̂post
is unbiased for the treatment effect of interest after pre-testing when parallel trends holds,
so long as the pre-test is symmetric.

Corollary 3.1 (No pre-test bias under parallel trends). Suppose that parallel trends holds,
so that δpre = δpost = 0. If the pre-test B is such that β̂pre ∈ B if and only if −β̂pre ∈ B,
then

E
[
β̂post | β̂pre ∈ B

]
= τpost.
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3.3 Pre-testing reduces the variance of estimates

Having analyzed the properties of the mean of the treatment effect estimate conditional on
passing a pre-test for parallel trends, we now turn to analyzing its variance. We begin with
a general formula, which expresses the conditional variance of the treatment effect in terms
of its unconditional variance and the distortion to the variance of the pre-period coefficients.

Proposition 3.3.

Var
[
β̂post|β̂pre ∈ B

]
= Var

[
β̂post

]
+ (Σ12Σ−1

22 )
(
Var

[
β̂pre | β̂pre ∈ B

]
− Var

[
β̂pre

])
(Σ12Σ−1

22 )′.

In the model in Section 2, we found that the variance of the treatment effect estimate
conditional on passing the pre-test for parallel trends was smaller than the unconditional
variance. We now show that that this feature holds more broadly for a large class of pre-
tests. In particular, we only require that the pre-test is convex, meaning that if we do not
reject parallel trends for β̂pre,1 and β̂pre,2, then for θ ∈ (0, 1), we also will not reject parallel
trends for θβ̂pre,1 + (1− θ)β̂pre,2. This property holds for most common pre-tests – including
tests of individual statistical significance, joint tests for significance, and tests for significant
linear slopes.

Proposition 3.4 (Pre-testing reduces variance). Suppose that B is a convex set. Then
Var

[
β̂post | β̂pre ∈ B

]
≤ Var

[
β̂post

]
.

4 The practical relevance of pre-testing distortions: evi-

dence from a review of recent papers

This section provides evidence that the theoretical concerns raised in the previous sections
are relevant in practice. First, in a systematic review of recent papers in three leading
economics journals, I illustrate that conventional pre-tests for parallel trends often have low
power even against substantial linear violations of parallel trends. Second, I show that bias
and coverage issues can be substantially different, and in many cases worse, conditional on
surviving a pre-test. Although homoskedasticity typically does not hold in practice, the bias
from pre-testing nonetheless amplifies the bias from a monotone trend in most cases, and
can be of a substantial magnitude.
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4.1 Selecting the sample of papers

I searched on Google Scholar for occurrences of the phrase “event study” in papers published
in the American Economic Review, AEJ: Applied Economics, and AEJ: Economic Policy
between 2014 and June 2018. I chose the phrase “event study” since papers that evaluate
pre-trends often do so in a so-called “event study plot.” The search returned 70 total papers
that include a figure displaying the results from what the authors describe as an event-study.

For my analysis, I further restricted to papers meeting the following criteria:

1. The data to replicate the event-study plot was publicly available.

2. The event-study plot shows point estimates and CIs for dynamic treatment effects
relative to some reference period, which is normalized to zero.

3. The authors do not explicitly reject a causal interpretation of the event-study.

Meets criteria: Number of Papers
Contains event study plot 70
& Replication data available 27
& Provides standard errors 18
& Normalizes a period to 0 15
& Doesn’t reject causal interpretation 12

Table 1: Number of papers meeting criteria for inclusion in review of papers

Table 1 shows the number of papers that were eliminated by each of the criteria. Un-
fortunately, the constraint that the data be publicly available eliminated roughly two-thirds
of the original sample of papers.8 The second constraint eliminated two groups of papers.
First, some papers portray the time-series of the outcome of interest for the treatment group
and control group, typically without standard errors. I omit these papers, since I would
like to rely on the author’s determination of what the appropriate clustering scheme is for
standard errors. Second, the restriction that a pre-period be normalized to zero primarily
rules out a handful of papers employing a more traditional finance event-study, which exam-
ines the time-series of cumulative abnormal return around some event of interest. The final
constraint eliminated a handful of papers in which the authors recognize that the pre-trends
do not appear to be flat, and either subsequently add time-varying controls or suggest a
non-causal interpretation.

Twelve papers contained event-study plots that matched all of the above criteria. Some
of these papers present multiple event-study plots, many of which show robustness checks or

8I also omit one paper in which the replication code produced different results from the published paper.
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heterogeneity analyses. I focus here on the first plot presented in the paper that meet the
criteria above, which I view as a reasonable proxy for paper’s main specification.

Two caveats are in order with regards to the sample of papers considered here. First, my
sample by construction only includes papers that made it through the publication process at
leading economics journals. To the extent that papers with insignificant pre-trends are more
likely to be published, the sample may be biased towards papers where the power of pre-tests
is low. Second, several papers in my sample use dynamic two-way fixed effects specifications
in settings with staggered treatment timing. As discussed in Remark 2, pre-testing for values
of δpre 6= 0 has a sensible interpretation only under certain homogeneity assumptions about
the dynamic path of treatment effects. For the remainder of the section, I suppose that the
authors are willing to impose some homogeneity assumptions such that the pre-testing step
using their baseline specification is sensible. I then evaluate the power of common pre-tests
and distributions of conventional estimates in data-generating processes calibrated to these
specifications.

4.2 What pre-tests are researchers using?

It is not entirely clear in practice what criteria researchers are using to evaluate pre-trends.
By far the most commonly mentioned criterion is that none of the pre-period coefficients is
individually statistically significant – e.g. “the estimated coefficients of the leads of treat-
ments, i.e., δk for all k ≤ −2 are statistically indifferent from zero” (He and Wang, 2017).
However, many papers do not specify the exact criteria that they are using to evaluate
pre-trends. Moreover, it is clear that a statistically significant pre-period coefficient does
not necessarily preclude publication. As shown in Table 2, there is at least one statistically
significant pre-period coefficient in three of the 12 papers in my final sample, and in two
papers the pre-period coefficients are also jointly significant.9

4.3 Evaluating power and pre-test bias in practice

I now evaluate the power of conventional pre-tests and the distortions from pre-testing in
data-generating processes calibrated to my survey of recent papers.

Data-generating processes. I calibrate the finite-sample normal model (5) by setting
Σ to be the estimated variance-covariance matrix from the specification reported by the

9In none of the papers is the slope of the best-fit line through the pre-period coefficients significant at
the 5% level. However, no paper mentions this as a criterion of interest, and one case falls just short of
significance with a t-statistic of 1.95.
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Table 2: Summary of Pre-period Event Study Coefficients

Note: This table provides information about the pre-period event-study coefficients in the papers reviewed.
The table shows the number of pre-periods in the event-study, the fraction of the pre-period coefficients that
are significant at the 95% level, the maximum t-stat among those coefficients, the p-value for a chi-squared
test of joint significance, and the t-stat for the slope of the linear trend through the pre-period coefficients.
See Section 4 for more detail on the sample of papers reviewed.

authors, using whatever clustering method was specified by the authors. Using the finite-
sample normal DGP suppresses any complications arising from non-normality of the OLS
estimates or difficulties with estimating Σ in finite sample, and thus focuses attention solely
on the issues related to pre-testing for violations of parallel trends.

Power calculations. For each study in my sample, I evaluate the power of common
pre-trends tests to detect linear violations of parallel trends. In light of the emphasis in
published work on the individual statistical significance of the pre-period coefficients, I base
my calculations on pre-tests using this criterion (using 95% CIs). Specifically, I consider
linear violations of parallel trends with a slope of γ – that is, the element of δ corresponding
with period t is δt = γ · t. I then compute the value of γ for which the probability of passing
the pre-test, P

(
β̂pre ∈ BNIS

)
, is equal to 50 or 80 percent. I choose 80 percent since this

is often used as a benchmark for an acceptable degree of power in power analyses (Cohen,
1988). I refer to the resulting values, γ0.5 and γ0.8, as the slopes against which we have 50
or 80 percent power.10

10The power of the pre-test under a slope γ could easily be calculated via simulation. However, under
the normality assumption, these probabilities can actually be calculated analytically using the formulas of
Manjunath and Wilhelm (2012), which I implement using the R package tmvtnorm.
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Focusing on linear violations of parallel trends is a reasonable benchmark for several
reasons. First, when researchers are worried about possible violations of parallel trends, they
frequently control parametrically for linear differential trends (e.g., Wolfers (2006); Dobkin
et al. (2018); Goodman-Bacon (2018)), which indicates that authors perceive linear violations
of parallel trends to be reasonable in many cases. In other cases, researchers may not be
confident that the linear functional form is correct – which is perhaps why they do not include
parametric linear controls – but they may nonetheless be worried about secular differences
in trends that evolve smoothly over time. Focusing on the performance of conventional pre-
tests under linear violations of parallel trends thus gives a lower bound on the worst-case
performance of pre-tests over smooth classes of violations that include linear trends. For
instance, a common way to parameterize the smoothness of a (discrete) curve is via bounds
on (the disrete analog of) its second derivative, otherwise known as a second-order Holder
class (e.g., Armstrong and Kolesar (2018); Kolesar and Rothe (2018); Rambachan and Roth
(2019)). Since linear functions are included in any second-order Holder class, the results in
this section can alternatively be viewed as a lower-bound on the worst-case performance of
the pre-testing method over these classes of smoothly-evolving differences in trends. These
calculations likewise provide a lower bound on the worst-case performance over the class of
polynomial violations.

Nonetheless, linear violations of parallel trends will not be an appropriate benchmark in
all cases. In Appendix D, I conduct a similar exercise under data-generating processes in
which there are differential stochastic shocks to the treated and control groups. I again find
poor performance of standard pre-testing methods in controlling size distortions from the
differential trends.

Bias and size calculations. I evaluate the performance of conventional estimators and
CIs under data-generating processes with linear violations of parallel trends with slopes γ0.5

or γ0.8. I focus on estimation and inference for two scalar causal estimands, the first period
treatment effect τ1, and the average treatment effect across the post-treatment periods,
τ̄ = 1

M
(τ1+...+τM). Note that both of these estimands can be written as linear combinations

of the vector of treatment effects, τ∗ = l′τpost. I therefore evaluate the performance of the
estimator τ̂∗ = l′β̂post, as well as the 95% confidence interval, CIτ∗ = τ̂∗ ± 1.96στ∗ , where
σ2
τ∗ = l′Σl.
Specifically, I calculate the unconditional bias E [τ̂∗ − τ ], and the bias conditional on pass-

ing the pre-test E
[
τ̂∗ − τ | β̂pre ∈ BNIS

]
. Note that the unconditional bias for τ1 is merely γ,

whereas the unconditional bias for τ̄ is 1
M

(γ+ ...+Mγ). I compute the conditional bias using
the formula in Proposition 3.1, making use of the results in Manjunath and Wilhelm (2012)
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to calculate the expectation of the multivariate truncated normal analytically. Likewise, I
compute the size (i.e. null rejection probability) of CIτ∗ both unconditionally and condi-
tionally, P (τ∗ 6∈ CIτ∗) and P (τ∗ 6∈ CIτ∗ | βpre ∈ BNIS).11 These probabilities are calculated
analytically using the tmtvnorm package in R, which implements results on the marginal
distribution of truncated normals from Cartinhour (1990).12

Results. I find that the magnitude of the violations of parallel trends against which we
have 50 and 80 percent power can be sizable relative to the magnitude of the estimated
treatment effect. Figure 4 plots in green the magnitude of the unconditional bias for τ̄ under
the linear violations of parallel trends against which we have 80% power (γ0.8). The bias
from such trends is often of a magnitude comparable to, and in some cases larger than,
the estimated treatment effect. Appendix Figure D2 shows the equivalent results for the
trends against which we have 50 percent power (γ0.5); even at the lower power threshold,
the biases are of a comparable magnitude to the estimated treatment effects in several cases.
Appendix Figures D3 and D4 present the analogous results when the estimand is the first
period treatment effect (τ1); the patterns are similar although a bit less extreme. This is
intuitive, given that the bias from a linear trend grows over time, and we would thus expect
it to be larger for later periods.

I likewise find that the bias conditional on passing the pre-test can substantially differ
from the unconditional bias, and is worse in most cases. Figure 4 plots in red the conditional
bias for τ̄ . I also summarize the additional bias from pre-testing as a percentage of the
unconditional bias in Table 3. For the trend against which we have 50 percent power, the
pre-test bias can be as much as 103 percent of the bias from the trend for the first period after
treatment, and as much as 48 percent for the average of the post-periods.13 The analogous
values are even larger when looking at the trend against which we have 80 percent power.
Moreover, the pre-test bias and the bias from trend go in the same direction in all but two
of the studies in the sample when the estimand is τ̄ , and all but three of the studies when
it is τ1. Thus, although not always true, the prediction of the direction of the bias from the
homoskedastic case holds in most cases I consider.

I also find that traditional CIs perform poorly under these violations of parallel trends
11Note that both the estimates and confidence intervals are equivariant in τpost, so that the bias and

coverage probabilities do not depend on the true value of the treatment effect. τpost thus does not need to
be specified in our calibrations.

12I have verified that calculating both the bias and size results via simulation yields similar results to the
analytic formulas discussed above.

13We expect the bias from pre-testing to be a larger fraction of the bias from the trend in periods closer
to treatment, since the bias from the trend grows linearly in the number of periods after treatment, whereas
the pre-test bias need not grow over time (whether it does depends on the covariance between the pre-period
and post-period coefficients).

23



that conventional pre-tests are marginally powered to detect. Table 4 shows the probability
that a 95% confidence interval for τ̄ fails to include the true value of the parameter. Although
the true parameter should nominally fall outside the confidence interval no more than 5% of
the time, for many of the specifications the null rejection rate is over 50%. Table D1 shows
the analogous results when the estimand is the first period after treatment. Although less
extreme, null rejection probabilities again often substantially exceed their nominal levels.
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Treatment Effect:
1st Period All Periods
Slope of differential trend:

Paper γ0.5 γ0.8 γ0.5 γ0.8

Bailey and Goodman-Bacon (2015) 51 56 1 2
Bosch and Campos-Vazquez (2014) -29 -34 -25 -29
Deryugina (2017) 103 120 30 35
Deschenes et al. (2017) 88 119 48 64
Fitzpatrick and Lovenheim (2014) 25 30 12 15
Gallagher (2014) 57 62 11 14
He and Wang (2017) 29 34 11 13
Kuziemko et al. (2018) -16 -20 -9 -11
Lafortune et al. (2017) -9 -10 5 5
Markevich and Zhuravskaya (2018) 52 62 13 15
Tewari (2014) 90 102 19 21
Ujhelyi (2014) 51 59 15 18

Table 3: Percent Additional Bias Conditional on Passing Pre-test

Note: This table shows the additional bias from conditioning on none of the pre-period co-
efficients being statistically significant as a percentage of the unconditional bias, i.e. 100 ·
ConditionalBias− UnconditionalBias

UnconditionalBias
. Biases are calculated under linear violations of parallel trends

with slopes γ0.5 and γ0.8, against which conventional pre-tests have 50 or 80% power.
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Conditional on passing pre-test?
No Yes

Slope of differential trend:
γ0.5 γ0.8 γ0.5 γ0.8

Bailey and Goodman-Bacon (2015) 0.61 0.94 0.62 0.95
Bosch and Campos-Vazquez (2014) 0.49 0.86 0.28 0.61
Deryugina (2017) 0.49 0.84 0.75 1.00
Deschenes et al. (2017) 0.09 0.14 0.10 0.25
Fitzpatrick and Lovenheim (2014) 0.41 0.75 0.50 0.87
Gallagher (2014) 0.19 0.44 0.22 0.54
He and Wang (2017) 0.54 0.88 0.63 0.95
Kuziemko et al. (2018) 0.28 0.53 0.20 0.42
Lafortune et al. (2017) 0.71 0.98 0.76 0.99
Markevich and Zhuravskaya (2018) 0.76 0.98 0.87 1.00
Tewari (2014) 0.20 0.55 0.25 0.72
Ujhelyi (2014) 0.29 0.60 0.36 0.76

Table 4: Null Rejection Probabilities for Nominal 5% Test of Average Treatment Effect
Under Linear Trends Against Which We Have 50 or 80% Power

Note: This table shows null rejection probabilities for nominal 5% significant level tests using data-generating
processes under which there are linear violations of parallel trends that conventional pre-tests would detect
50 or 80% of the time (γ0.5 and γ0.8). The first two columns show unconditional null rejection probabilities,
whereas the latter two columns condition on passing the pre-test. The estimand is the average of the
post-treatment causal effects, τ̄ .
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5 Alternative Approaches

In light of the issues highlighted with the common approach of pre-testing for pre-trends,
this section discusses alternative approaches to estimation and inference in settings where
we are concerned that parallel trends may be violated. Each of these methods can be viewed
as imposing different restrictions on the way that parallel trends may be violated. The
appropriate method will therefore depend on which assumptions are reasonable in a given
context. I first discuss each of the methods, and provide recommendations for choosing
between them in Section 5.3.

5.1 Parametric Approaches

I first consider parametric approaches, which impose particular functional form restrictions
on the way that parallel trends can be violated. Extrapolations of pre-treatment data can
then be used to estimate the counterfactual post-treatment difference in trends, thus remov-
ing the bias in conventional estimates. One common approach in the literature is to assume
linearity of the differential trend (e.g., Wolfers (2006); Dobkin et al. (2018); Goodman-Bacon
(2018)). That is, we assume that δt = t ×MT δpre, where MT = (t′t)−1t′ is the matrix that
projects the pre-period coefficients onto a linear time trend t = (−K, ...,−1). Under this as-
sumption, τt = βt− t×MTβpre, and it is thus straightforward to do estimation and inference
using the sample analog, τ̂t = β̂t − t×MT β̂pre, with standard errors calculated via the delta
method.14 An advantage of this approach is that it provides valid causal estimates without
pre-testing, provided that the functional form restriction is correct.

Under the appropriate functional form restrictions, the simple method discussed so far
yields valid causal estimates from an ex ante sampling perspective. However, it does not
yield valid causal estimates conditional on passing a pre-test. For instance, it is clear from
Figure 2 that extrapolating a linear trend in the DGP considered in Section 2.2 would
yield valid causal estimates unconditionally, but fail to properly control for the pre-trends
conditional on passing the pre-test. Standard parametric methods are thus not well-suited
for retrospective analysis, i.e. evaluating previously published studies, if we think that these
were selected on the basis of pre-trends tests. In Appendix B, I show that parametric
methods can be adapted to obtain estimates and CIs with good properties conditional on
passing a pre-test (or model selection on the basis of pre-trends), provided that we know the

14We consider here the approach where one first estimates a usual “event-study” specification and then
projects out a linear trend fitted to the estimated coefficients. A closely related approach directly estimates
a version of equation (2) that includes an interaction of treatment status with time. The two approaches are
identical in the balanced panel, non-staggered treatment timing difference-in-differences case. See Goodman-
Bacon (2019, Supplement, p.20) for additional discussion regarding the staggered case.
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pre-testing rule. By adapting publication-bias corrections from Andrews and Kasy (2019), I
provide median-unbiased estimates and CIs that are valid after pre-testing under parametric
functional form restrictions on the difference in trends. These adapted methods are thus
suitable for parametric, retrospective analyses of published studies that relied on pre-trends
testing.

An issue with the parametric approach, however, is that we are often unsure of the correct
functional form for the difference in trends (Wolfers, 2006; Lee and Solon, 2011). To address
this, researchers sometimes report specifications using different functional forms, e.g. linear
and quadratic specifications. This, in my view, is an improvement upon the status quo of
relying only on the significance of pre-trends tests, as results that do not survive a simple
linear or quadratic adjustment, despite an insignificant pre-trend, should rightly be viewed
with caution. Nonetheless, this approach is a bit unsatisfying from a theoretical perspective,
as we usually do not believe that either a linear or quadratic extrapolation is exactly correct.

5.2 Alternative relaxations of the parallel trends assumption

In light of this, we now turn our attention to alternative approaches that relax the exact
parallel trends assumption without taking as strong a stance on the functional form of
possible violations of parallel trends.

One such approach is that of Freyaldenhoven et al. (2019). Their approach allows for their
to be differential trends in an outcome yit, so long as i) differences in trends in yit are driven by
some unobserved factors ηit that affect both yit and treatment status Dit, and ii) there exists
an alternative outcome xit, which is assumed to also be affected by ηit (possibly with different
factor loadings) but is unaffected by the treatment. In a minimum wage context, y could
be youth employment, D an indicator for whether the minimum wage was raised, x adult
employment (which is plausibly unaffected by the minimum wage), and η factors related to
local labor demand. Freyaldenhoven et al. (2019) show that under these assumptions (and
certain other technical conditions), the causal effect of the treatment is point identified, and
it can be consistently estimated via GMM. An advantage of this approach is that it allows
for complicated forms of pre-trends that cannot be represented by a simple functional form.
A challenge is that it is often difficult to determine an appropriate excluded outcome.

Rambachan and Roth (2019) provide an alternative approach to robust inference that
attempts to formalize many of the implicit intuitions behind pre-trends testing. They pro-
vide methods for inference on components of τ under the assumption that the difference in
trends δ lies in some pre-specified class ∆. They propose as a default classes ∆ that impose
smoothness restrictions on the possible difference in trends, e.g. bounds on (the discrete ana-
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log of) the second derivative.15 This formalizes the intuition behind pre-trends testing that
the pre-treatment differences are informative about the counterfactual post-treatment differ-
ences in trends, since without such a smoothness restriction, the difference in trends could be
arbitrarily “jumpy,” and thus values of δpre close to 0 would provide little information about
the post-treatment bias δpost. The parametric linear specifications discussed above can be
viewed as a special case of a smoothness restriction in which we impose that the differences
in trends are exactly linear. Rambachan and Roth (2019) recommend conducting sensitivity
analysis with respect to the allowed degree of non-linearity in the differential trends, an
exercise which enables the researcher to make precise what needs to be assumed about the
possible differences in trends in order to draw particular conclusions. Their framework also
allows researcher to incorporate sign and shape restrictions, such as monotonicity, that may
be motivated by context-specific knowledge.

An advantage of the approaches of Freyaldenhoven et al. (2019) and Rambachan and
Roth (2019) is that they provide uniformly valid inference under certain restrictions about
the way in which parallel trends may be violated. Under these restrictions, we can therefore
obtain valid causal inference without conducting pre-tests, thus avoiding the issues with
pre-testing discussed in this paper.

A disadvantage of the approaches of Freyaldenhoven et al. (2019) and Rambachan and
Roth (2019) is that both provide valid inference only from an ex ante sampling perspective,
and not conditional on passing a pre-test. Thus, while both are valuable for prospective
analyses, they cannot currently be used for retrospective analysis of work that has already
been screened for pre-existing trends. An interesting question for future research is the
extent to which these procedures can be modified to obtain valid inference following a pre-
test, analogous to the modifications discussed above and in Appendix B for the parametric
approach.

5.3 Recommendations

Given the issues with pre-testing discussed in this paper, I strongly recommend against rely-
ing solely on tests for pre-trends in contexts in which there is concern that the parallel trends
assumptions may be violated. Depending on the context and assumptions the researcher is
willing to impose, each of the three alternative approaches discussed above may be reason-
able. The parametric approach is a sensible option in settings where researchers have a strong

15A closely related predecessor to Rambachan and Roth (2019) is Manski and Pepper (2018), who consider
how the identified set of parameters changes under different assumptions about how parallel trends is violated.
In contrast to Rambachan and Roth (2019), however, they do not formally consider incorporating information
from pre-trends or conducting inference.
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view about the relevant functional form of a violation of parallel trends. When combined
with the corrections discussed in Appendix B, it is also currently the only viable method
to obtain valid estimation and inference for retrospective analyses of papers that have been
screened on the basis of pre-trends. Likewise, in settings where the researcher does not have
a strong prior about the functional form restriction, but does know of an excluded outcome
affected by the same confounds, the approach of Freyaldenhoven et al. (2019) is sensible.
Finally, I recommend the sensitivity analysis described in Rambachan and Roth (2019) for
settings where the researcher has neither a strong prior on the functional form of differential
trends or an excluded outcome.

Regardless of the exact method, I urge researchers to bring economic knowledge to bear
in evaluating the assumptions necessary to obtain valid causal inference. To be valid, each
of these alternative methods requires a particular set of assumptions on how parallel trends
can potentially be violated. Bringing economic knowledge to bear on how parallel trends
may be violated, and thus the plausibility of these assumptions, will yield stronger, more
credible inferences than relying on the statistical significance of pre-trends tests alone. This
argument echoes the sentiment of Kahn-Lang and Lang (2018), who encourage researchers
to consider the economic content of the parallel trends assumption.

6 Conclusion

This paper illustrates the limitations of tests for pre-trends, which are common in applied
work. I show both theoretically and in simulations based on a survey of recent papers
that pre-trends testing may be ineffective in guarding against potential violations of parallel
trends, both because power may be low and because of distortions in the distribution of
conventional estimates from pre-testing. I discuss alternative econometric approaches for
settings where there is concern that parallel trends may be violated. I encourage researchers
to be transparent about their assumptions about how parallel trends may be violated, and
to use economic knowledge to evaluate the content of these assumptions.
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This supplement contains proofs and additional results for the paper “Pre-test with Cau-
tion: Event-study Estimates After Testing for Parallel Trends.” Section A provides proofs
for the results in the main text. Section B introduces corrections to parametric approaches
that have good properties conditional on surviving a test for pre-trends. Section C states
and proves asymptotic results. Section D provides additional simulation results in which the
treatment and control group receive stochastic common shocks. Finally, Section E contains
additional figures.

A Proofs for Results in the Main Text

This section collects proofs for the results in the main text, as well as some auxiliary lemmas.
We begin with a lemma, which will be useful in the following proofs.

Lemma A.1. Let β̃post = β̂post − Σ12Σ−1
22 β̂pre. Then β̃post and β̂pre are independent.

Proof. Note that by assumption, β̂post and β̂pre are jointly normal. Since β̃post is a linear
combination of β̂post and β̂pre, it follows that β̂pre and β̃post are jointly normal. It thus
suffices to show that β̂pre and β̃post are uncorrelated. We have

Cov
(
β̂pre , β̃post

)
= E

[(
β̂pre − βpre

)(
(β̂post − βpost)− Σ12Σ−1

22 (β̂pre − βpre)
)′]

= Σ′12 − Σ22Σ−1
22 Σ′12

= 0

which completes the proof.
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Proof of Proposition 3.1 Note that by construction, β̂post = β̃post+Σ12Σ−1
22 β̂pre. It follows

that

E
[
β̂post | β̂pre ∈ B

]
= E

[
β̃post | β̂pre ∈ B

]
+ Σ12Σ−1

22 E
[
β̂pre | β̂pre ∈ B

]
= E

[
β̃post

]
+ Σ12Σ−1

22 E
[
β̂pre | β̂pre ∈ B

]
= E

[
β̂post − Σ12Σ−1

22 β̂pre

]
+ Σ12Σ−1

22 E
[
β̂pre | β̂pre ∈ B

]
= βpost − Σ12Σ−1

22 βpre + Σ12Σ−1
22 E

[
β̂pre | β̂pre ∈ B

]
= βpost + Σ12Σ−1

22

(
E
[
β̂pre | β̂pre ∈ B

]
− βpre

)
where the second line uses the independence of β̃post and β̂pre from Lemma A.1, and the third
and fourth use the definition of β̃post, βpost, and βpre. Since βpost = τpost + δpost by definition,
the result follows. �

Definition 1 (Symmetric Truncation About 0). We say that B ⊂ RK is a symmetric
truncation around 0 if β ∈ B iff −β ∈ B.

Lemma A.2. Suppose Y ∼ N (0, Σ) is a K-dimensional multivariate normal, and B is a
symmetric truncation around 0. Then E [Y |Y ∈ B] = 0.

Proof. Note that if Y ∼ N (0, Σ), then−Y is also distributedN (0, Σ). Using this, combined
with the fact that (−Y ) ∈ B iff Y ∈ B by assumption, we have

E [Y |Y ∈ B] = E [−Y | (−Y ) ∈ B]

= E [−Y |Y ∈ B]

= −E [Y |Y ∈ B] ,

which implies that E [Y |Y ∈ B] = 0.

Proof of Corollary 3.1 From Proposition 3.1, it suffices to show that E
[
β̂pre | β̂pre ∈ B

]
−

βpre = 0. However, βpre = 0 by the assumption of parallel trends, and E
[
β̂pre | β̂pre ∈ B

]
= 0

by Lemma A.2. �
We now prove a series of Lemmas leading up to the proof of Proposition 3.2.
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Lemma A.3. Suppose Y is a k-dimensional multivariate normal, Y ∼ N (µ, Σ), and let
B ⊂ Rk be a convex set such that P (Y ∈ B) > 0. Letting Dµ denote the Jacobian operator
with respect to µ, we have

1. DµE [Y |Y ∈ B, µ] = Var [Y |Y ∈ B, µ] Σ−1.

2. Var [Y |Y ∈ B]− Σ is negative semi-definite.

Proof.16

Define the function H : Rk → R by

H(µ) =

∫
B

φΣ(y − µ)dy

for φΣ(x) = (2π)−
k
2 det(Σ)−

1
2 exp(−1

2
x′Σ−1x) the PDF of the N (0, Σ) distribution. We now

argue that H is log-concave in µ. Note that we can write H(µ) =
∫
Rk g1(y, µ)g2(y, µ)dy for

g1(y, µ) = φΣ(y − µ) and g2(y, µ) = 1 [y ∈ B]. The normal PDF is log-concave, and g1 is
the composition of the normal PDF with a linear function, and hence log-concave as well.
Likewise, g2 is log-concave since B is a convex set. The product of log-concave functions
is log-concave, and the marginalization of a log-concave function with respect to one of its
arguments is log-concave by Prekopa’s theorem (see, e.g. Theorem 3.3 in Saumard and
Wellner (2014)), from which it follows that H is log-concave in µ.

Now, applying Leibniz’s rule and the chain rule, we have that the 1× k gradient of logH

with respect to µ is equal to

Dµ logH =

∫
B
DµφΣ(y − µ)dy∫
B
φΣ(y − µ)dy

=

∫
B
φΣ(y − µ)(y − µ)′Σ−1dy∫

B
φΣ(y − µ)dy

= (E [Y |Y ∈ B]− µ)′Σ−1.

where the second line takes the derivative of the normal PDF, DµφΣ(y − µ) = φΣ(y − µ) ·
(y − µ)′Σ−1, and the third uses the definition of the conditional expectation. It follows that

E [Y |Y ∈ B, µ] = µ+ Σ(Dµ logH)′.

16I am grateful to Alecos Papadopolous, whose answer on StackOverflow to a related question inspired
this proof.

38

https://math.stackexchange.com/questions/445164/is-the-mean-of-the-truncated-normal-distribution-monotone-in-mu


Differentiating again with respect to µ, we have that the k×k Jacobian of E [Y |Y ∈ B, µ]

with respect to µ is given by

DµE [Y |Y ∈ B, µ] = I + ΣDµ(Dµ logH)′. (8)

Since H is log-concave, Dµ(Dµ logH)′ is the Hessian of a concave function, and thus is
negative semi-definite. Next, note that by definition,

E [Y |Y ∈ B, µ] =

∫
B
y φΣ(y − µ) dy∫
B
φΣ(y − µ) dy

.

Thus, applying Leibniz’s rule again along with the product rule,

DµE [Y |Y ∈ B, µ] =

∫
B
y DµφΣ(y − µ) dy∫
B
φΣ(y − µ) dy

+[∫
B

y φΣ(y − µ) dy

]
·Dµ

[∫
B

φΣ(y − µ) dy

]−1

. (9)

Recall that

DµφΣ(y − µ) = φΣ(y − µ) · (y − µ)′Σ−1.

The first term on the right-hand side of (9) thus becomes

∫
B
y(y − µ)′φΣ(y − µ) dy∫

B
φΣ(y − µ) dy

Σ−1 =

(E [Y Y ′ |Y ∈ B, µ]− E [Y |Y ∈ B, µ]µ′) Σ−1.

Applying the chain-rule, the second term on the right-hand side of (9) becomes

−
∫
B
y φΣ(y − µ) dy ·

∫
B

(y − µ)′ φΣ(y − µ) dy[∫
B
φΣ(y − µ) dy

]2 Σ−1 =(
−E [Y |Y ∈ B, µ]E [Y |Y ∈ B, µ]′ + E [Y |Y ∈ B, µ]µ′

)
Σ−1.

Substituting the expressions in the previous two displays back into (9), we have
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DµE [Y |Y ∈ B, µ] =
(
E [Y Y ′ |Y ∈ B, µ]− E [Y |Y ∈ B, µ]E [Y |Y ∈ B, µ]′

)
Σ−1

= Var [Y |Y ∈ B, µ] Σ−1, (10)

which establishes the first result. Additionally, combining (8) and (10), we have that

Var [Y |Y ∈ B, µ] Σ−1 = I + ΣDµ(Dµ logH)′, (11)

which implies that

Var [Y |Y ∈ B, µ]− Σ = ΣDµ(Dµ logH)′Σ. (12)

Thus, for any vector x ∈ Rk,

x′ (Var [Y |Y ∈ B, µ]− Σ)x = x′ (ΣDµ(Dµ logH)′Σ)x

= (Σx)′ (Dµ(Dµ logH)′) (Σx)

≤ 0

where the inequality follows from the fact that Dµ(Dµ logH)′ is negative semi-definite. Since
Var [Y |Y ∈ B, µ]−Σ is symmetric, it follows that it is negative semi-definite, as we desired
to show. �

Lemma A.4. Suppose that Σ satisfies Assumption 1. Then for ι the vector of ones and
some c1 > 0, ι′Σ−1

22 = c1ι
′. Additionally, Σ12Σ−1

22 = c2ι
′, for a constant c2 > 0.

Proof. First, note that if K = 1, then Σ12 and Σ22 are each positive scalars, and the result
follows trivially. For the remainder of the proof, we therefore consider K > 1. Note that
we can write Σ22 = Λ + ριι′, where Λ = (σ2 − ρ)I. It follows from the Sherman-Morrison
formula that:

Σ−1
22 = Λ−1 − ρ2Λ−1ιι′Λ−1

1 + ρ2ι′Λ−1ι

= (σ2 − ρ)−1I − ρ2(σ2 − ρ)−2ιι′

1 + ρ2(σ2 − ρ)−1ι′ι
.
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Thus:

ι′Σ−1
22 =

ι′
(

(σ2 − ρ)−1I − ρ2(σ2 − ρ)−2ιι′

1 + ρ2(σ2 − ρ)−1ι′ι

)
=

(σ2 − ρ)−1

(
1− ρ2(σ2 − ρ)−1ι′ι

1 + ρ2(σ2 − ρ)−1ι′ι

)
ι′ =

(σ2 − ρ)−1

(
1

1 + ρ2(σ2 − ρ)−1ι′ι

)
︸ ︷︷ ︸

:=c1

ι′.

Since σ2 − ρ > 0, all of the terms in c1 are positive, and thus c1 > 0, as needed. Finally,
note that Assumption 1 implies that Σ12 = ρι′. It follows that Σ12Σ−1

22 = ρc1ι
′ = c2ι

′ for
c2 = ρc1 > 0.

Lemma A.5. Suppose Y ∼ N (0,Σ) is K-dimensional normal, with Σ satisfying the require-
ments on Σ22 imposed by Assumption 1. Let B = {y ∈ RK | aj ≤ y ≤ bj for all j}, where
−bj < aj < bj for all j. Then for ι the vector of ones, E [ι′Y |Y ∈ B] = E [Y1 + . . .+ Yk |Y ∈ B]

is elementwise greater than 0.

Proof. For any x ∈ RK such that xj ≤ bj for all j, define BX(x) = {y ∈ RK |xj ≤ y ≤
bj for all j}. Let b = (b1, . . . , bK). Note that BX(−b) is a symmetric rectangular truncation
around 0, so from Lemma A.2, we have that E

[
Y |Y ∈ BX(−b)

]
= 0. Now, define

g(x) = E
[
ι′Y |Y ∈ BX(x)

]
.

From the argument above, we have that g(−b) = 0, and we wish to show that g(a) > 0. By
the mean-value theorem, for some t ∈ (0, 1),

g(a) = g(−b) + (a− (−b)) ∇g (ta+ (1− t)(−b))

= (a+ b)∇g (ta+ (1− t)(−b))

=: (a+ b)∇g(xt).

By assumption, (a + b) is elementwise greater than 0. It thus suffices to show that all

elements of ∇g (xt) are positive. Without loss of generality, we show that
∂g(xt)

∂xK
> 0.
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Using the definition of the conditional expectation and Leibniz’s rule, we have

∂g(xt)

∂xK
=

∂

∂xK

(∫ b1

xt1

· · ·
∫ bK

xtK

(y1 + . . .+ yK) φΣ(y) dy1 . . . dyK

)(∫ b1

xt1

· · ·
∫ bK

xtK

φΣ(y) dy1 . . . dyK

)−1
 =

(∫ b1

xt1

· · ·
∫ bK

xtK

(y1 + . . .+ yK) φΣ(y) dy1 . . . dyK ×
∫ b1

xt1

· · ·
∫ bK−1

xtK−1

φΣ

((
y−K

xtK

))
dy1 . . . dyK−1

−
∫ b1

xt1

· · ·
∫ bK−1

xtK−1

(y1 + . . .+ yK−1 + xtK) φΣ

((
y−K

xtK

))
dy1 . . . dyK−1 ×

∫ b1

xt1

· · ·
∫ bK

xtK

φΣ(y) dy1 . . . dyK

)

×

(∫ b1

xt1

· · ·
∫ bK

xtK

φΣ(y) dy1 . . . dyK

)−2

(13)

where φΣ(y) denotes the PDF of a multivariate normal with mean 0 and variance Σ, and

the second line uses the quotient rule. It follows from (13) that
∂g(xt)

∂xK
> 0 if and only if

∫ b1
xt1
· · ·
∫ bK
xtk

(y1 + . . .+ yK) φΣ(y) dy1 . . . dyK∫ b1
xt1
· · ·
∫ bK
xtk

φΣ(y) dy1 . . . dyK
>

∫ b1
xt1
· · ·
∫ bK−1

xtK−1
(y1 + · · ·+ yK−1 + xtK) φΣ

((
y−K

xtK

))
dy1 . . . dyK−1

∫ b1
xt1
· · ·
∫ bK−1

xtK−1
φΣ

((
y−K

xtK

))
dy1 . . . dyK−1

or equivalently,

E
[
Y1 + . . .+ YK |xtj ≤ Yj ≤ bj,∀j

]
> E

[
Y1 + . . .+ YK |xtj ≤ Yj ≤ bj, for j < K, YK = xtK

]
.

It is clear that E
[
YK |xtj ≤ Yj ≤ bj,∀j

]
> xtK , since xtK < bK and the Kth marginal density

of the rectangularly-truncated normal distribution is positive for all values in [xtK , bK ] (see
Cartinhour (1990)). This completes the proof for the case where K = 1. For K > 1, it
suffices to show that
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E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj,∀j

]
≥ E

[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj, for j < K, YK = xtK

]
.

(14)

To see why (14) holds, let Ỹ−K = Y−K −Σ−K,KΣ−1
K,KYK , where a “−K” subscript denotes

all of the indices except for K. By an argument analogous to that in the Proof of Lemma
A.1 for β̃post, one can easily verify that Ỹ−K is independent of YK and Ỹ−K ∼ N

(
0, Σ̃

)
for Σ̃ = Σ−K,−K − Σ−K,KΣ−1

K,KΣK,−K . By construction, Y−K = Ỹ−K + Σ−K,KΣ−1
K,KYK , from

which it follows that

Y−K |YK = yK ∼ N
(

Σ−K,KΣ−1
K,KyK , Σ̃

)
.

We now argue that Σ−K,KΣ−1
K,KyK = c yK ι for a positive constant c. If K = 2, then by

Assumption 1, Σ−K,KΣ−1
K,K = ρ/σ2 is the product of two positive scalars, and can thus be

trivially written as cι. For K > 2, we verify that Σ̃ meets the requirements that Assumption
1 places on Σ22, and then apply Lemma A.4 to obtain the desired result. To do this, note
that by Assumption 1, Σ has common terms σ2 on the diagonal and ρ on the off-diagonal,
and thus the same holds for Σ−K,−K . Additionally, under Assumption 1, Σ−K,K = ρι and
Σ−1
K,K = 1

σ2 , so Σ−K,KΣ−1
K,KΣK,−K equals ρ2/σ2 times ιι′, the matrix of ones. The diagonal

terms of Σ̃ = Σ−K,−K − Σ−K,KΣ−1
K,KΣK,−K are thus equal to σ̃2 = σ2 − ρ2/σ2, and the

off-diagonal terms are equal to ρ̃ = ρ − ρ2/σ2, or equivalently ρ̃ = ρ(1 − ρ/σ2). Since by
Assumption 1, 0 < ρ < σ2, it is clear that σ̃2 > ρ̃. Additionally, 0 < ρ < σ2 implies that
1− ρ/σ2 > 0, and hence ρ̃ > 0, which completes the proof that Σ̃ satisfies the requirements
of Assumption 1 for Σ22. Hence, Σ−K,KΣ−1

K,KyK = c yK ι by Lemma A.4. We can therefore
write

Y−K |YK = yK ∼ N
(
c yK ι, Σ̃

)
.

Let h(µ) = E
[
X|X ∈ B−K , X ∼ N

(
µ, Σ̃

)]
forB−K = {x̃ ∈ RK−1|xtj ≤ x̃j ≤ bj, for j =

1, . . . , K−1}. Then the previous display implies E
[
ι′Y−K |xtj ≤ Yj ≤ bj for j < K, YK = yK

]
=

ι′h(cyKι). Hence,
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∂

∂yK
E
[
ι′Y−K |xtj ≤ Yj ≤ bj for j < K, YK = yK

]
= ι′ (Dµh|µ=cyK ι) ι · c

= ι′Var [Y−K |Y−K ∈ B−K , YK = yK ] Σ̃−1ιc

= ι′Var [Y−K |Y−K ∈ B−K , YK = yK ] ιc1c

≥ 0

where the second line follows from Lemma A.3; the third line uses Lemma A.4 to obtain
that Σ̃−1ι = ιc1 for c1 > 0 (if K = 2, this holds trivially); and the inequality follows from the
fact that Var [Y−K |Y−K ∈ B−K , YK = yK ] is positive semi-definite and c1 and c are positive
by construction. Thus, for all yK ∈ [xtk, bk],

E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK = yK

]
≥

E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK = xtk

]
.

By the law of iterated expectations, we have

E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj,∀j

]
=

E
[
E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK

]
|xtj ≤ Yj ≤ bj,∀j

]
≥

E
[
E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK = xtK

]
|xtj ≤ Yj ≤ bj,∀j

]
=

E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK = xtK

]
,

as we wished to show.

Proof of Proposition 3.2 From Proposition 3.1, the desired result is equivalent to show-
ing that

Σ12Σ−1
22 E

[
β̂pre − βpre | β̂pre ∈ B

]
> 0.

By Lemma A.4, Σ12Σ−1
22 = c1ι

′ for c1 > 0, so it suffices to show that ι′E
[
β̂pre − βpre | β̂pre ∈ B

]
is elementwise greater than zero. Note that by assumption (β̂pre − βpre) ∼ N (0, Σ22).
Additionally, observe that β̂pre ∈ BNIS = {β̂pre : |β̂pre,j|/

√
Σjj ≤ cα for all j} iff (β̂pre −

βpre) ∈ B̃NIS = {β : aj ≤ βj ≤ bj} for aj = −cα
√

Σjj − βpre,j and bj = cα
√

Σjj − βpre,j.
Since βpre,j < 0 for all j, we have that −bj < aj < bj for all j. The result then follows
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immediately from Lemma A.5.

Proof of Proposition 3.3 Note that since β̂post = β̃post + Σ12Σ−1
22 β̂pre, for any set S,

Var
[
β̂post | β̂pre ∈ S

]
= Var

[
β̃post | β̂pre ∈ S

]
+ Var

[
Σ12Σ−1

22 β̂pre | β̂pre ∈ S
]

+ 2Cov
(
β̃post , Σ12Σ−1

22 β̂pre | β̂pre ∈ S
)

= Var
[
β̃post

]
+ Var

[
Σ12Σ−1

22 β̂pre | β̂pre ∈ S
]
, (15)

where we use the independence of β̃post and β̂pre from Lemma A.1 to obtain that Var
[
β̃post | β̂pre ∈ B

]
=

Var
[
β̃post

]
and that the covariance term equals 0. Applying equation (15) for S = B and

for S = RK , and then taking the difference between the two, we have

Var
[
β̂post|β̂pre ∈ B

]
− Var

[
β̂post

]
= Var

[
Σ12Σ−1

22 β̂pre | β̂pre ∈ B
]
− Var

[
Σ12Σ−1

22 β̂pre

]
= (Σ12Σ−1

22 )
(
Var

[
β̂pre | β̂pre ∈ B

]
− Var

[
β̂pre

])
(Σ12Σ−1

22 )′,

which gives the desired result.

Proof of Proposition 3.4 By Proposition 3.3, it suffices to show that

(Σ12Σ−1
22 )
(
Var

[
β̂pre | β̂pre ∈ B

]
− Var

[
β̂pre

])
(Σ12Σ−1

22 )′ ≤ 0.

The result then follows immediately from the fact that Var
[
β̂pre | β̂pre ∈ B

]
− Var

[
β̂pre

]
is

negative semi-definite by Lemma A.3. �

B Pre-test Corrected Parametric Approaches

Section 5.1 discusses how, under functional form restrictions about the possible violations of
parallel trends, one can obtain estimates and CIs that have good properties from an ex ante
sampling perspective. However, even if the imposed functional form restrictions are correct,
these parametric specifications will not yield unbiased point estimates or CIs with correct
coverage conditional on surviving a pre-test for parallel trends. Given how common these
pre-tests are under the status quo, for retrospective analyses of published papers we may
wish to obtain estimates with good properties conditional on surviving a pre-test.
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In this section I develop methods which, under the same functional form restrictions
as standard parametric approaches, deliver median-unbiased estimates and valid CIs con-
ditional on passing a pre-test for pre-trends. In particular, I discuss the construction of
a median-unbiased estimator and CIs for a scalar parameter of the form τ ∗ = η′β, where
β = (βpre, βpost) and η is a vector of the appropriate length. This allows for estimating causal
effects under a variety of functional form assumptions about the difference in trends. For
instance, in Section 5.1, we showed that under a linearity assumption about the possible dif-
ferences in trends, we could write τt = βt− t×MTβpre, whereMT is the matrix that projects
βpre onto a linear time trend. We could likewise accommodate other types of functional form
restrictions by projecting βpre onto different functions of time, e.g. higher-order polynomials
or sinusoidal functions.

I begin with a derivation of median-unbiased estimates and CIs that are valid conditional
on surviving a pre-test for a fixed specification. I then show that the results can be extended
to cases where the researcher searches over multiple specifications – e.g. with different sets of
control variables or focusing on different subpopulations – and selects the final specification
on the basis of the observed pre-trends.

B.1 Construction of the corrected estimator and CIs

B.1.1 Correcting for a pre-test with a fixed specification

We begin by deriving the distribution of η′β̂ conditional on the event β̂ ∈ B.17 In general,
the conditional distribution of η′β̂ will depend on the full parameter vector β, and we will
therefore condition also on a minimal sufficient statistic for the other components of β.
The following result extends Theorem 5.2 in Lee et al. (2016), who show the result for the
particular case where B is a polyhedron.

Lemma B.1 (Conditional distribution of η′β̂). Let β̂ = (β̂post, β̂pre) and η 6= 0 be in RK+M .
Define c = Ση/(η′Ση) and Z = (I − cη′)β̂. Then

η′β̂ | β̂ ∈ B,Z = z ∼ ξ | ξ ∈ Ξ(z),

for ξ ∼ N (η′β, η′Ση), and Ξ(z) := {x : ∃β̂ ∈ B s.t. x = η′β̂ and z = (I − cη′)β̂}.

Proof of Lemma B.1
17In a slight change of notation, I will now refer to B as the conditioning set for the full parameter

vector β̂ = (β̂pre, β̂post) rather than for β̂pre only. Note that we can write the event β̂pre ∈ Bpre ⊂ RK as
β̂ ∈ B = {(βpre, βpost) ∈ RK+M |βpre ∈ Bpre}.
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Proof. Note that by construction, η′β̂ and Z are jointly normal and uncorrelated, hence
independent. Thus, without conditioning on β̂ ∈ B, we have

η′β̂ |Z = z ∼ N (η′β, η′Ση) .

Conditioning further on β̂ ∈ B implies that η′β̂ ∈ Ξ(z), but owing to the (unconditional)
independence of Z and η′β̂, provides no additional information about η′β̂. It follows that

η′β̂ | β̂ ∈ B,Z = z ∼ ξ | ξ ∈ Ξ(z),

for ξ ∼ N (η′β, η′Ση), and Ξ(z) := {x : ∃β̂ ∈ B s.t. x = η′β̂ and z = (I − cη′)β̂}.

Having derived the conditional distribution η′β̂, we can then make use of results on op-
timal quantile-unbiased estimators and inference for exponential family distributions, which
were originally developed by Pfanzagl (1994). The following result is a restatement of Propo-
sition D.2 of the supplement to Andrews and Kasy (2019); similar results have been obtained
recently by Lee et al. (2016) on inference for the LASSO, and Andrews et al. (2018) on in-
ference for “winners”.

Proposition B.1 (Optimal quantile-unbiased estimation). Let η 6= 0 be in RK+M . Assume
that β̂ ∈ B with positive probability, and that Σ is full rank. Let FΞ

µ,σ2 denote the CDF of the
normal distribution with mean µ and variance σ2 truncated to the set Ξ. Define b̂α(η′β̂, z) to
be the value of x that solves FΞ(z)

x,η′Ση(η
′β̂) = 1− α, for Ξ(z) as defined in Lemma B.1. Then

for any α ∈ (0, 1), b̂α is α-quantile unbiased conditional on β̂ ∈ B,

P
(
b̂α(η′β̂, Z) ≤ η′β | β̂ ∈ B

)
= 1− α.

Further, suppose that the parameter space for β is an open set, and that the distribution
of η′β̂ |Z, β̂ ∈ B is continuous for almost every Z. Then b̂α is uniformly most concentrated
in the class of α-quantile-unbiased estimators, in the sense that for any other α-quantile
unbiased estimator b̃α, and any loss function L(x, η′β) that attains its minimum at x = η′β

and is increasing as x moves away from η′β,

E
[
L
(
b̂α(η′β̂, Z) , η′β

)
| β̂ ∈ B

]
≤ E

[
L
(
b̃α , η

′β
)
| β̂ ∈ B

]
.

Corollary B.1. Under the conditions of Proposition B.1, conditional on β̂ ∈ B, b̂0.5(η′β̂, Z)

is a uniformly most-concentrated median-unbiased estimate of η′β, and the interval C1−α :=

[b̂α/2(η′β̂, Z), b̂1−α/2(η′β̂, Z)] is a 1− α level confidence interval for η′β.
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Proof of Corollary B.1

Proof. Median-unbiasedness of b̂0.5(η′β̂, Z) follows immediately from Proposition B.1. To
show that C1−α controls size, note that η′β 6∈ C1−α only if either b̂α/2(η′β̂, Z) > η′β or
b̂1−α/2(η′β̂, Z) < η′β. However, Proposition B.1 implies that each of these events occurs with
probability bounded above by α/2, and thus η′β 6∈ C1−α with probability bounded above by
α.

Applying these results in practice requires calculation of the set Ξ(z). In Section B.2, I de-
rive easy-to-calculate formulas for Ξ(z) for the cases where B is based on linear or quadratic
restrictions on β̂, which covers the common cases of tests based on individual or joint signif-
icance.

Intuitively, the median-unbiased estimator proposed above chooses the value b̂0.5 so that
if the parameter of interest η′β were equal to b̂0.5, then the observed value η′β̂ would be at
the median of the distribution conditional on passing the pre-test. Figure 5 shows how this
pre-test corrected median-unbiased estimator works in the stylized example in Section 2. We
treat as the estimand the value of the post-treatment event-study coefficient minus a linear
projection of the pre-period trend, τ ∗ = β1 + β−1, which corresponds with τ1 if we impose
that the differential trend is linear (δ1 = −δ−1). Figure 5 shows the difference β̂1 − b̂0.5 as
a function of the pre-period coefficient β̂−1. It also shows the equivalent difference for the
naive linear projection that does not adjust for pre-testing (β̂1− (β̂1 + β̂−1) = −β̂−1). We see
that b̂0.5 looks similar to the parametric estimator that does not adjust for pre-testing when
β̂−1 is close to 0. However, for values of β̂−1 closer to the rejection boundary of ±1.96, the
pre-test corrected estimator makes a larger adjustment to β̂−1 than the traditional estimator.
Intuitively, this is because the naive estimate of the slope of a linear pre-trend will generally
be biased towards 0 conditional on passing the pre-test. In order to correct for this, the pre-
tested adjusted estimator inflates the estimates of the slope of the pre-trend. It uses a larger
inflation factor the closer β̂−1 is to the inflation boundary, since conditional on passing the
pre-test, β̂−1 is more likely to be near the decision boundary when β−1 is large in magnitude.

B.1.2 Correcting for specification search using pre-trends

So far, I have considered the case where the researcher accepts or rejects a fixed research
design on the basis of pre-trends. In practice, however, researchers may choose among
multiple specifications on the basis of pre-trends. For instance, a researcher may first evaluate
tests for pre-trends in a large sample, and then upon finding a significant pre-trend, restrict
to a subsample in which the pre-trends appear to be better. Likewise, a researcher may
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Figure 5: Adjustment to conventional estimates using pre-test corrected linear parametric
estimates

Note: For an estimator τ̂1, this figure shows the difference β̂1− τ̂1 as a function of β̂−1, in the stylized model
considered in Section 2. The two estimators considered are the naive estimator that adjusts parametrically
for a linear trend, τ̂1 = β̂1 + β̂−1, and the adjusted linear parametric estimator b̂0.5 that corrects for the
pre-test that β̂−1 is statistically insignificant.
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evaluate the pre-trends both with and without certain controls in their regression, and choose
the specification with the flattest observable pre-trends.

The machinery developed so far can easily be adapted to handle selection among a finite
number of specifications on the basis of the pre-trends. Suppose that we have M models,
each with estimated event-study coefficients β̂m = (β̂mpre, β̂

m
post). Let β̂stacked = (β̂1, ..., β̂M)

denote the stacked vector of coefficients across the M models. For OLS, the stacked vector
of coefficients can be estimated using Seemingly Unrelated Regressions (SUR), and so will
typically be asymptotically normal. Under a normal approximation for β̂stacked, we can
immediately apply the results from the previous section to obtain median-unbiased estimates
and valid CIs for parameters of the form τ ∗,m = η′βm, conditional on model m being chosen.
That is, letting B∗m denote the set of values for β̂stacked such that model m is chosen, we
can obtain adjusted estimates with the property that P

(
b̂mj ≤ τ ∗,m | β̂stacked ∈ B∗m

)
= 0.5.

Conditional coverage of the corrected CIs can be defined analogously.
Implementing these corrected estimates and CIs in practice requires calculation of the set

Ξ(z) accounting for the model selection rule. In Section B.2, I show that Ξ(z) can be easily
calculated for a variety of model selection rules, including rules where the researcher tries a
series of models and stops when she finds one without a significant pre-trend, or where she
chooses the model with the smallest pre-trend.

B.2 Computing Ξ For Common Pre-tests

Applying the corrections discussed above in practice requires computation of the set Ξ(z). I
now derive the form of Ξ(z) for polyhedral and quadratic pre-tests, which respectively cover
the cases of pre-tests based on individual and joint significance. I then derive the form of
Ξ(z) for a variety of model selection criteria.

B.2.1 Calculating Ξ(z) for polyhedral pre-tests

We first consider the case where B = {β |Aβ ≤ b}. Note that the test that no pre-period
coefficient is significant can be written in this form, BNIS = {β |ANISβ ≤ bNIS}, for ANIS =(

IK×K 01×M

−IK×K 01×M

)
and bNIS =

(
cα ×

√
diag(Σ)

cα ×
√
diag(Σ)

)
. For the polyhedral case, the form of

Ξ(z) follows immediately from the results of Lee et al. (2016).

Lemma B.2 (Application to polyhedral conditioning sets). Suppose that the conditioning
set B = {β |Aβ ≤ b} for A an R ×K + M matrix and b an R × 1 vector. Then Ξ(z), as
defined in Lemma B.1, is an interval in R, with endpoints V −(z) and V +(z) given by:
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V −(z) = max
{j:(Ac)j<0}

bj − (Az)j
(Ac)j

(16)

V +(z) = min
{j:(Ac)j>0}

bj − (Az)j
(Ac)j

. (17)

Additionally, if P
(
β̂ ∈ B

)
> 0, then the conditions for the optimality of the α-quantile-

unbiased estimator in Proposition B.1 are met.

B.2.2 Calculating Ξ(z) for quadratic pre-tests

I next derive the form of Ξ(z) for tests based on a quadratic form of the parameters, such
as tests based on the joint significance or the euclidean norm of the pre-period coefficients.

Lemma B.3. Let B = {β | β′Aβ ≤ b} for A an (K +M)× (K +M) matrix and b a scalar.
Let A = c′Ac, B = 2c′Az, C = z′Az − b, and D = B2 − 4A · C, for c and z as defined in
Lemma B.1. Then:

1. If A > 0,D ≥ 0, Ξ(z) =
[
−B−

√
D

2A , −B+
√
D

2A

]
.

2. If A < 0,D ≥ 0, Ξ(z) =
(
−∞, −B+

√
D

2A

]
∪
[
−B−

√
D

2A ,∞
)
.

3. If A < 0,D < 0, Ξ(z) = R.

4. If A > 0,D < 0, then Ξ(z) = ∅.

5. If A = 0, B > 0 then Ξ(z) = (−∞,− CB ].

6. If A = 0, B < 0, Ξ(z) = [− CB ,∞).

7. If A = 0, B = 0, then Ξ(z) = R if C ≤ 0 and Ξ(z) = ∅ if C > 0.

Additionally, if P
(
β̂ ∈ B

)
> 0, then the conditions for the optimality of the α-quantile-

unbiased estimator in Proposition B.1 are met.

B.2.3 Calculating Ξ(z) after model selection

I now discuss the computation of Ξ(z) after selection among a finite number of models, as
discussed in Section B.1.2.

The form of Ξ will of course depend on the criteria for the specification search, but I note
that a wide variety of specification searches will generate a Ξ that is the union of intervals in
R. To see why this is the case, note first that from the definition of Ξ(z), it follows easily that
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if B = B1 ∪ B2, then ΞB(z) = ΞB1(z) ∪ ΞB2(z), and likewise, if B = B1 ∩ B2, then ΞB(z) =

ΞB1(z)∩ΞB2(z). ΞB(z) will therefore take the form of a union of intervals if the conditioning
set B can be written as the union and intersection of a sequence of conditioning sets that
themselves produce unions of intervals for Ξ(z).18 Further, Propositions B.2 and B.3 show
that when conditioning on linear or quadratic restrictions on β̂, Ξ(z) is the union of intervals.
Note also that the norm of β̂mpre is less than that of β̂m′pre if and only if β̂′(Am − Am′)β̂ ≤ 0

for Am the matrix with 1s on the diagonal in the positions corresponding with the elements
of β̂mpre and zero otherwise. Thus, any selection rule that depends on logical combinations of
the (individual or joint) significance of the pre-trends coefficients from each model and/or
the relative magnitudes of the models will generate a Ξ(z) that is the union of intervals.

A few examples are of note. First, suppose the researcher considers models sequentially
and stops at the first model that has an insignificant pre-trend (either jointly, or based on the
significance of each of the individual coefficients). Then if themth model is chosen, Ξ(z) is the
intersection of the sets on which models 1, ...,m− 1 have a significant pre-trend, intersected
with the set on which model m does not have a significant pre-trend. Second, suppose the
researcher chooses the model that minimizes the norm of the pre-period coefficients. Then
Ξ(z) is the intersection of the sets on which the chosen model m∗ has a lower norm than
model m′ for each candidate m′. Finally, suppose that the researcher first tests model 1
on the full population, and then if it has a significant pre-trend, chooses whichever has
the smaller pre-trend among models 2 and 3, which each restrict to different subsets of the
population. Then Ξ(z) for the event model 2 is selected will correspond with the union of
intervals on which model 1 is significant intersected with the interval(s) corresponding with
the event that the norm of model 2 is less than that of model 3.

B.2.4 Proofs for the results on Ξ(z)

Proof of Lemma B.2

Proof. The form for Ξ(z) follows immediately from Lemma 5.1 in Lee et al. (2016).
We now verify that the distribution of η′β̂ |Z,Aβ̂ ≤ b is continuous for almost every Z.

Note that by Lemma B.1, η′β̂ |Z = z, Aβ̂ ≤ b is truncated normal with truncation points
V −(z) and V +(z) and untruncated variance η′Ση. The untruncated variance is strictly
positive since Σ is positive definite and η 6= 0, and so the conditional distribution of η′β̂ is
continuous if V −(z) < V +(z). Since conditional on Aβ̂ ≤ b and Z = z, V −(z) ≤ η′β̂ ≤
V +(z), we have V −(z) = V +(z) only if V −(z) = η′β̂.

18Note that the complement of a collection of intervals is also a collection of intervals, and the intersection
of collections of intervals can therefore be re-cast as a union of intervals using DeMorgan’s laws.
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It thus suffices to show that P
(
η′β̂ = V −(Z) |Aβ̂ ≤ b

)
= 0. Note though that

P
(
η′β̂ = V −(Z)

)
= E

[
P
(
η′β̂ = V −(z) |Z = z

)]
.

Next, observe that for any fixed value z, P
(
η′β̂ = V −(z) |Z = z

)
= 0 since η′β̂ and Z are

independent by construction and the distribution of η′β̂ is continuous since β̂ is normally
distributed, Σ is full rank, and η 6= 0. It follows that

0 = P
(
η′β̂ = V −(Z)

)
= P

(
η′β̂ = V −(Z) |Aβ̂ ≤ b

)
P
(
Aβ̂ ≤ b

)
+ P

(
η′β̂ = V −(Z) |Aβ̂ 6≤ b

)
P
(
Aβ̂ 6≤ b

)
≥ P

(
η′β̂ = V −(Z) |Aβ̂ ≤ b

)
P
(
Aβ̂ ≤ b

)
.

Since P
(
Aβ̂ ≤ b

)
> 0 by assumption, it follows that P

(
η′β̂ = V −(Z) |Aβ̂ ≤ b

)
= 0, as

needed.

Proof of Lemma B.3 Note that by β̂ ∈ B iff β̂′Aβ̂ − b ≤ 0. Further, by construction
β̂ = z + cη′β̂, so

β̂′Aβ̂ − b =
(
z + cη′β̂

)′
A
(
z + cη′β̂

)
− b

= (c′Ac)︸ ︷︷ ︸
:=A

(η′β̂)2 + 2c′Az︸ ︷︷ ︸
:=B

(η′β̂) + (z′Az − b)︸ ︷︷ ︸
:=C

,

which is a quadratic in (η′β̂). The first part of the result then follows by solving for the
region where the parabola Ax2 + Bx+ C ≤ 0 using the quadratic formula.

To verify the conditions for optimality, note that the first part of the result implies that
Ξ(Z) is the finite union of intervals on the real line. (We can safely ignore the situations in
which Ξ(Z) = ∅, since conditional on β̂ ∈ B, Ξ(Z) is non-empty with probability 1). Since
η′β̂ | β̂ ∈ B,Z = z is truncated normal, it will be continuous unless Ξ(z) collapses to a set
of measure 0. However, examining the possible cases, we see that this could only occur if
A > 0,D ≥ 0 and the interval collapses to a point. By the same argument as in the proof
to Lemma B.2, this occurs with probability zero, which completes the proof. �
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C Uniform Asymptotic Results

In the main text of the paper, I consider a finite sample normal model for the event-study
coefficients. I evaluate the distribution of the event-study estimates conditional on passing
a pre-test for the pre-period coefficients. In Appendix B, I derive corrections to parametric
methods that have good properties after pre-testing in the context of this model. In this
section, I show that these finite-sample results translate to uniform asymptotic results over a
large class of data-generating processes in which the probability of passing the pre-test does
not go to zero asymptotically, i.e. when the pre-trend is O(n−

1
2 ). I focus here on results for

polyhedral pre-tests, which include the common pre-test that no pre-period coefficient be
individually statistically significant.

C.1 Assumptions

We consider a class of data-generating processes P . Let β̂n =
√
nβ̂ be the event-study

estimates β̂ =

(
β̂post

β̂pre

)
scaled by

√
n. Likewise, let τP,n =

√
n

(
τpost(P )

0

)
be the scaled

vector of treatment effects under data-generating process P ∈ P , where we assume there is
no true effect of treatment in the pre-periods.

Assumption 2 (Unconditional uniform convergence). Let BL1 denote the set of Lipschitz
functions which are bounded by 1 in absolute value and have Lipschitz constant bounded by
1. We assume

lim
n→∞

sup
P∈P

sup
f∈BL1

∣∣∣∣∣∣EP [f(β̂n − τP,n)
]
− E [f(ξP,n)]

∣∣∣∣∣∣ = 0,

where ξP,n ∼ N (δP,n, ΣP ).

Convergence in distribution is equivalent to convergence in bounded Lipschitz metric (see
Theorem 1.12.4 in van der Vaart and Wellner (1996)), so Assumption 2 formalizes the notion
of uniform convergence in distribution of β̂n− τP,n to a N (δP,n, ΣP ) variable under P . Note
that we allow δ to depend both on P and the sample size n.

We next assume that we have a uniformly consistent estimator of the variance ΣP , and
that the eigenvalues of ΣP are bounded above and away from singularity.

Assumption 3 (Consistent estimation of ΣP ). Our estimator Σ̂ is uniformly consistent for
ΣP ,

lim
n→∞

sup
P∈P

PP
(
||Σ̂n − ΣP || > ε

)
= 0,

for all ε > 0.
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Assumption 4 (Assumptions on ΣP ). We assume that there exists λ̄ > 0 such that for all
P ∈ P, ΣP ∈ S := {Σ | 1/λ̄ ≤ λmin(Σ) ≤ λmax(Σ) ≤ λ̄}, where λmin(A) and λmax(A) denote
the minimal and maximal eigenvalues of a matrix A.

Next, we assume that the pre-test takes the form of a polyhedral restriction on the vector
of pre-period coefficients. Recall that the test that no pre-period coefficient be individually
significant can be written in this form.

Assumption 5 (Assumptions on B). We assume that the conditioning set B(Σ) is of the
form B(Σ) = {(βpost, βpre) |Apre(Σ)βpre ≤ b(Σ)} for continuous functions Apre and b. We
further assume that for all Σ on an open set containing S, B(Σ) is bounded and has non-
empty interior, and Apre(Σ) has no all-zero rows.

For ease of notation, it will be useful to define A(Σ) = [0, Apre(Σ)], so that β ∈ B(Σ) iff
A(Σ)β ≤ b(Σ).

C.2 Main uniformity results

Our first result concerns the asymptotic distribution of the event-study coefficients condi-
tional on passing the pre-test.

Proposition C.1 (Uniform conditional convergence in distribution). Under Assumptions
2-5,

lim
n→∞

sup
P∈P

sup
f∈BL1

∣∣∣∣∣∣EP [f(β̂n − τP,n) | β̂n ∈ B(Σ̂n)
]
− E [f(ξP,n)|ξP,n ∈ B(ΣP )]

∣∣∣∣∣∣ PP (β̂n ∈ B(Σ̂n)
)

= 0,

where ξP,n ∼ N (δP,n, ΣP ) .

Note that if we removed the PP
(
β̂n ∈ B(Σ̂n)

)
term from the statement of Proposition

C.1, then the proposition would imply uniform convergence in distribution of (β̂n−τP,n)|β̂n ∈
B(Σ̂n) to ξP,n|ξP,n ∈ B(ΣP ). The Proposition thus guarantees such convergence in distribu-
tion along any sequence of distributions for which the probability of passing the pre-test is
not going to zero.

Although Proposition C.1 gives uniform convergence of the treatment effect estimates
conditional on passing the pre-test, it is well known that convergence in distribution need
not imply convergence in expectations. Our next result shows that under the additional
assumption of asymptotic uniform integrability, we also obtain uniform convergence in ex-
pectations, provided that the probability of passing the pre-test is not going to zero.
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Proposition C.2 (Uniform convergence of expectations). Suppose Assumptions 2-5 hold.
Let βP,n = τP,n + δP,n. Assume that β̂n− βP,n is asymptotically uniformly integrable over the
class P,

lim
M→∞

lim sup
n→∞

sup
P∈P

EP
[
||β̂n − βP,n|| · 1[||β̂n − βP,n|| > M ]

]
= 0.

Then, for any ε > 0,

lim
n→∞

sup
P∈P

1
[∣∣∣∣∣∣EP [β̂n − τP,n | β̂n ∈ B(Σ̂n)

]
− E [ξP,n | ξP,n ∈ B(ΣP )]

∣∣∣∣∣∣ > ε
]
PP
(
β̂n ∈ B(Σ̂n)

)
= 0,

where ξP,n ∼ N (δP,n, ΣP ) .

Finally, our last main result concerns the asymptotic validity of the pre-test corrected
parametric estimator and CIs.

Proposition C.3 (Uniform asymptotic α-quantile unbiasedness). Let η 6= 0, and consider
b̂α(β̂n, Σ̂n) the α-quantile-unbiased estimator of η′β conditional on β̂n ∈ B(Σ̂n). Define
βP,n = τP,n + δP,n. Then under Assumptions 2-5,

lim
n→∞

sup
P∈P

∣∣∣∣∣∣PP (b̂α(β̂n, Σ̂n) ≤ η′βP,n | β̂n ∈ B(Σ̂n)
)
− (1− α)

∣∣∣∣∣∣ PP (β̂n ∈ B(Σ̂n)
)

= 0.

Proposition C.3 states that the corrected α-quantile-unbiased estimator b̂α is uniformly
α-quantile unbiased along any sequence of distributions such that the limiting probability
of passing the pre-test is not going to zero. It follows immediately that under any such
sequence b̂0.5 is asymptotically median-unbiased and the interval [b̂α/2, b̂1−α/2] is a valid 1−α
level confidence interval.

Corollary C.1 (Median unbiasedness and coverage of equal-tailed CIs). Suppose the con-
ditions of Proposition C.3 hold. Then

lim
n→∞

sup
P∈P

∣∣∣∣∣∣PP (b̂0.5(β̂n, Σ̂n) ≤ η′βP,n | β̂n ∈ B(Σ̂n)
)
− 0.5

∣∣∣∣∣∣ PP (β̂n ∈ B(Σ̂n)
)

= 0

and, for C1−α(β̂n, Σ̂n) = [b̂α/2(β̂n, Σ̂n), b̂1−α/2(β̂n, Σ̂n)],

lim
n→∞

sup
P∈P

∣∣∣∣∣∣PP (η′βP,n ∈ C1−α(β̂n, Σ̂n) | β̂n ∈ B(Σ̂n)
)
− (1− α)

∣∣∣∣∣∣ PP (β̂n ∈ B(Σ̂n)
)

= 0.
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C.3 Proofs for main uniformity results

Proof of Proposition C.1 Towards contradiction, suppose that the proposition is false.
Then there exists an increasing sequence of sample sizes nm and data-generating processes
Pnm such that

lim inf
m→∞

sup
f∈BL1

∣∣∣∣∣∣EPn [f(β̂n − τPnm ,nm) | β̂nm ∈ B(Σ̂nm)
]
− E

[
f(ξPnm ,nm)|ξ ∈ B(ΣPnm )

]∣∣∣∣∣∣×
PPnm

(
β̂nm ∈ B(Σ̂nm)

)
> 0. (18)

Since the interval [0, 1] is compact, there exists a subsequence of increasing sample sizes, nq,
such that

lim
q→∞

PPnq
(
β̂nq ∈ B(Σ̂nq)

)
= p∗,

for p∗ ∈ [0, 1].

Suppose first that p∗ = 0. Note that by definition, a function f ∈ BL1 is bounded in
absolute value by 1. It then follows from the triangle inequality that for all f ∈ BL1,

∣∣∣∣∣∣EPnq [f(β̂nq − τPnq ,nq) | β̂nq ∈ B(Σ̂nq)
]
− E

[
f(ξPnq ,nq)|ξPnq ,nq ∈ B(ΣPnq )

]∣∣∣∣∣∣ ≤ 2

for all q. But this implies that

lim inf
q→∞

sup
f∈BL1

∣∣∣∣∣∣EPnq [f(β̂nq − τPnq ,nq) | β̂nq ∈ B(Σ̂nq)
]
− E

[
f(ξPnq )|ξPnq ∈ B(ΣPnq )

]∣∣∣∣∣∣PPnq (β̂nq ∈ B(Σ̂nq)
)

≤ 2p∗ = 0,

which contradicts (18).
Now, suppose p∗ > 0. Note that by Assumption 4, ΣP falls in the set S = {Σ|1/λ̄ ≤

λmin(Σ) ≤ λmax(Σ) ≤ λ̄}, which is compact (e.g., in the Frobenius norm). Thus, we can
extract a further subsequence of increasing sample sizes, nr, such that

lim
r→∞

ΣPnr = Σ∗,

for some Σ∗ ∈ S.
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Additionally, since p∗ > 0, Lemma C.4 implies that δprePnr ,nr
is bounded, and thus we can

extract a further subsequence ns along which

lim
s→∞

δprePns ,ns
= δpre,∗.

By Lemma C.3, for δ+
ns =

(
δpostPns ,ns

0

)
, δ∗ =

(
0

δpre,∗

)
, and ξ∗ ∼ N (δ∗, Σ∗), we have

(β̂ns − τP,ns − δ+
ns)|β̂ns ∈ B(Σ̂ns)

d−→ ξ∗|ξ∗ ∈ B(Σ∗),

and
(ξPns − δ

+
ns)|ξPns ∈ B(ΣPns )

d−→ ξ∗|ξ∗ ∈ B(Σ∗).

Recalling the convergence in distribution is equivalent to convergence in bounded Lipschitz
metric, we see that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns [f(β̂ns − τPns ,ns − δ
+
ns) | β̂ns ∈ B(Σ̂ns)

]
− E [f(ξ∗)|ξ∗ ∈ B(Σ∗)]

∣∣∣∣∣∣ = 0 (19)

and

lim
s→∞

sup
f∈BL1

∣∣∣∣E [f(ξPns − δ
+
ns)|ξPns ∈ B(ΣPns )

]
− E [f(ξ∗)|ξ∗ ∈ B(Σ∗)]

∣∣∣∣ = 0. (20)

Equations (19) and (20) together with the triangle inequality then imply that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns [f(β̂ns − τPns ,ns − δ
+
ns) | β̂ns ∈ B(Σ̂ns)

]
− E

[
f(ξPns − δ

+
ns)|ξPns ∈ B(ΣPns )

]∣∣∣∣∣∣ = 0.

However, BL1 is closed under horizontal transformation (i.e. f(x) ∈ BL1 implies f(x− c) ∈
BL1), and so this implies that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns [f(β̂ns − τPns ,ns) | β̂ns ∈ B(Σ̂ns)
]
− E

[
f(ξPns )|ξPns ∈ B(ΣPns )

]∣∣∣∣∣∣ = 0,

which contradicts (18). �
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Proof of Proposition C.2 Towards contradiction, suppose the proposition is false. Then
there exists an increasing sequence of sample sizes nm and data-generating processes Pnm
such that for some ε > 0,

lim inf
m→∞

1
[∣∣∣∣∣∣E [β̂nm − τPnm ,nm | β̂nm ∈ B(Σ̂nm)

]
− E

[
ξPnm | ξPnm ∈ B(ΣPnm )

]∣∣∣∣∣∣ > ε
]
×

PPnm
(
β̂nm ∈ B(Σ̂nm)

)
> 0. (21)

Since the interval [0, 1] is compact, we can extract a subsequence of increasing sample
sizes, nq, along which

lim
q→∞

PPnq
(
β̂nq ∈ B(Σ̂nq)

)
= p∗

for p∗ ∈ [0, 1].
First, suppose p∗ = 0. Since the indicator function is bounded by 1,

lim inf
s→∞

1
[∣∣∣∣∣∣E [β̂nq − τPnq ,nq | β̂nq ∈ B(Σ̂nq)

]
− E

[
ξPnq | ξPnq ∈ B(ΣPnq )

]∣∣∣∣∣∣ > ε
]
PPnq

(
β̂nq ∈ B(Σ̂nq)

)
≤

lim inf
s→∞

PPnq
(
β̂nq ∈ B(Σ̂nq)

)
= p∗ = 0,

which contradicts (21).
Now, suppose p∗ > 0. As argued in the proof to Proposition C.1, we can iteratively

extract subsequences to obtain a subsequence, ns, along which

lim
s→∞

ΣPns = Σ∗,

lim
s→∞

δprePns ,ns
= δpre,∗,

lim
s→∞

PPns
(
β̂ns ∈ B(Σ̂ns)

)
= p∗ > 0,

where Σ∗ ∈ S.

Let δ−ns =

(
0

δprePns ,ns

)
and δ∗ =

(
0

δpre,∗

)
be the vectors with zeros for the post-period

coefficients and δprePns ,ns
and δpre,∗, respectively, for the pre-period coefficients. Similarly, let

δ+
ns =

(
δpostPns ,ns

0

)
be the vector with zeros for the pre-period coefficients and δpostPns ,ns

for the
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post-period coefficients. From Lemma C.3, (β̂ns − τPns ,ns − δ+
ns)|β̂ns ∈ B(Σ̂ns)

d−→ ξ∗|ξ∗ ∈
B(Σ∗), for ξ∗ ∼ N (δ∗, Σ∗).

Additionally, from uniform integrability, we have

lim
M→∞

lim sup
s→∞

EPns
[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ]

]
= 0.

Observe that

EPns
[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ]

]
=

EPns
[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns ∈ B(Σ̂ns)

]
· PPns

(
β̂ns ∈ B(Σ̂ns)

)
+

EPns
[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns 6∈ B(Σ̂ns)

]
· PPns

(
β̂ns 6∈ B(Σ̂ns)

)
≥

EPns
[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns ∈ B(Σ̂ns)

]
· PPns

(
β̂ns ∈ B(Σ̂ns)

)
,

and hence

lim
M→∞

lim sup
s→∞

EPns
[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns ∈ B(Σ̂ns)

]
·PPns

(
β̂ns ∈ B(Σ̂ns)

)
= 0.

Further, since PPns
(
β̂ns ∈ B(Σ̂ns)

)
→ p∗ > 0, it follows that

lim
M→∞

lim sup
s→∞

EPns
[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns ∈ B(Σ̂ns)

]
= 0,

so β̂ns − βPns ,ns is uniformly asymptotically integrable conditional on β̂ns ∈ B(Σ̂ns). Note
that β̂ns − τPns ,ns − δ+

ns = β̂ns − βPns ,ns + δ−ns , and δ
−
ns → δ∗ as s→∞. It then follows from

Lemma C.6 that β̂ns − τPns ,ns − δ+
ns is uniformly asymptotically integrable conditional on

β̂ns ∈ B(Σ̂ns).
Convergence in distribution along with uniform asymptotic integrability implies conver-

gence in expectation (see Theorem 2.20 in van der Vaart (2000)), and thus

lim
s→∞

∣∣∣∣∣∣EPns [β̂ns − τPns ,ns − δ+
ns | β̂ns ∈ B(Σ̂ns)

]
− E [ξ∗ | ξ∗ ∈ B(Σ∗)]

∣∣∣∣∣∣ = 0.

Likewise, Lemma C.5 gives that

lim
s→∞

∣∣∣∣E [ξPns − δ+
ns | ξPns ∈ B(ΣPns )

]
− E [ξ∗ | ξ∗ ∈ B(Σ∗)]

∣∣∣∣ = 0.

60



It then follows from the triangle inequality that

lim
s→∞

∣∣∣∣∣∣EPns [β̂ns − τPns ,ns − δ+
ns | β̂ns ∈ B(Σ̂ns)

]
− E

[
ξPns − δ

+
ns | ξPns ∈ B(ΣPns )

]∣∣∣∣∣∣ = 0.

Cancelling the δ+
ns terms gives

lim
s→∞

∣∣∣∣∣∣EPns [β̂ns − τns,Pns | β̂ns ∈ B(Σ̂ns)
]
− E

[
ξPns | ξPns ∈ B(ΣPns )

]∣∣∣∣∣∣ = 0,

which contradicts (21). �

Proof of Proposition C.3 Towards contradiction, suppose that the proposition is false.
Then there exists an increasing sequence of sample sizes nm and data-generating processes
Pnm such that

lim inf
m→∞

∣∣∣∣∣∣PPnm (b̂α(β̂nm , Σ̂nm) ≤ η′βPnm ,nm | β̂nm ∈ B(Σ̂nm)
)
− (1− α)

∣∣∣∣∣∣ PPnm (β̂nm ∈ B(Σ̂nm)
)
> 0.

(22)

Since the interval [0, 1] is compact, there exists a subsequence of increasing sample sizes,
nq, such that

lim
q→∞

PPnq
(
β̂nq ∈ B(Σ̂nq)

)
= p∗,

for p∗ ∈ [0, 1].

First, suppose p∗ = 0. Note that∣∣∣∣∣∣PPnq (b̂α(β̂nq , Σ̂nq) ≤ η′βnq ,Pnq | β̂nq ∈ B(Σ̂nq)
)
− (1− α)

∣∣∣∣∣∣ ≤ 1,

and hence

lim inf
q→∞

∣∣∣∣∣∣PPnq (b̂α(β̂nq , Σ̂nq) ≤ η′βPnq ,nq | β̂nq ∈ B(Σ̂nq)
)
− (1− α)

∣∣∣∣∣∣ PPnq (β̂nq ∈ B(Σ̂nq)
)
≤ p∗ = 0,

which contradicts (22).
Next, suppose p∗ > 0. As argued in the proof to Proposition C.1, we can extract a

subsequence of increasing sample sizes, ns, such that
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lim
s→∞

ΣPns = Σ∗, (23)

lim
s→∞

δprePns ,ns
= δpre,∗, (24)

lim
s→∞

PPns
(
β̂ns ∈ B(Σ̂ns)

)
= p∗, (25)

where Σ∗ ∈ S and p∗ ∈ [0, 1].
We wish to obtain a contradiction of (22) by showing that

lim
s→∞

∣∣∣∣∣∣PPns (b̂α(β̂ns , Σ̂ns) ≤ η′βPns ,ns | β̂ns ∈ B(Σ̂ns)
)
− (1− α)

∣∣∣∣∣∣ = 0.

Let δ+
ns =

(
δpostPns ,ns

0

)
, δ−ns =

(
0

δprePns ,ns

)
, and δ∗ =

(
0

δpre,∗

)
. From Lemma C.7, it suffices

to show that, for β̂∗ns = β̂ns − τPns ,ns − δ+
ns ,

lim
s→∞

∣∣∣∣∣∣PPns (b̂α(β̂∗ns , Σ̂ns) ≤ η′δ−ns | β̂
∗
ns ∈ B(Σ̂ns)

)
− (1− α)

∣∣∣∣∣∣ = 0.

Further, Lemma C.8 implies that this is equivalent to:

lim
s→∞

∣∣∣∣∣∣PPns (g(β̂∗ns , Σ̂ns , δ
−
ns) ≤ 1− α | β̂∗ns ∈ B(Σ̂ns)

)
− (1− α)

∣∣∣∣∣∣ = 0,

for g as defined in Lemma C.8.
Note that by construction, for ξ∗ ∼ N (δ∗, Σ∗),

g(ξ∗,Σ∗, δ∗) | ξ∗ ∈ B(Σ∗) ∼ U [0, 1].

Thus,

P (g(ξ∗,Σ∗, δ∗) ≤ 1− α | ξ∗ ∈ B(Σ∗)) = 1− α,

and the distribution of g(ξ∗,Σ∗, δ∗) | ξ∗ ∈ B(Σ∗) is continuous at 1−α. Additionally, Lemma
C.3, along with (23) and (24), imply that

(β̂∗ns , Σ̂ns , δ
−
ns) | β̂

∗
ns ∈ B(Σ̂ns)

d−→ (ξ∗,Σ∗, δ∗) | ξ∗ ∈ B(Σ∗).

Since Lemma C.12 gives that the function g is continuous for almost every (ξ∗,Σ∗, δ∗),
conditional on ξ∗ ∈ B(Σ∗), the result then follows from the Continuous Mapping Theorem.
�
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Proof of Corollary C.1

Proof. The result for b̂0.5 is immediate from Proposition C.3. To show the second result,
note that

PP
(
η′βP,n 6∈ C1−α(β̂n, Σ̂n) | β̂n ∈ B(Σ̂n)

)
=

PP
(
b̂α/2(β̂n, Σ̂n) > η′βP,n | β̂n ∈ B(Σ̂n)

)
+ PP

(
b̂1−α/2(β̂n, Σ̂n) < η′βP,n | β̂n ∈ B(Σ̂n)

)
,

since η′βP,n falls outside of C1−α only if it is greater than the upper bound or less than the
lower bound, and both of these events cannot occur simultaneously. Applying the result in
the previous display along with the triangle inequality and the fact that for any event E,
P (E) = 1− P (Ec), we obtain that

lim
n→∞

sup
P∈P

∣∣∣∣∣∣PP (η′βP,n ∈ C1−α(β̂n, Σ̂n) | β̂n ∈ B(Σ̂n)
)
− (1− α)

∣∣∣∣∣∣ PP (β̂n ∈ B(Σ̂n)
)
≤

lim
n→∞

sup
P∈P

∣∣∣∣∣∣PP (b̂1−α/2(β̂n, Σ̂n) ≤ η′βP,n | β̂n ∈ B(Σ̂n)
)
− α/2

∣∣∣∣∣∣ PP (β̂n ∈ B(Σ̂n)
)

+

lim
n→∞

sup
P∈P

∣∣∣∣∣∣PP (b̂α/2(β̂n, Σ̂n) ≤ η′βP,n | β̂n ∈ B(Σ̂n)
)
− (1− α/2)

∣∣∣∣∣∣ PP (β̂n ∈ B(Σ̂n)
)

+

lim
n→∞

sup
P∈P

∣∣∣∣∣∣PP (b̂1−α/2(β̂n, Σ̂n) = η′βP,n | β̂n ∈ B(Σ̂n)
)∣∣∣∣∣∣ PP (β̂n ∈ B(Σ̂n)

)
The first two terms on the right-hand side of the previous display converge to 0 by Proposition
C.3. That the final term is 0 can be shown using an argument analogous to that in the proof
of Proposition C.3. Specifically, using the notation from the proof of Proposition C.3, note
that b̂α(β̂ns , Σ̂ns) = η′βPns ,ns iff g(β̂∗ns , Σ̂ns , δ

−
ns) = 1 − α. However, we show in the proof to

Proposition C.3 that for ξ∗ ∼ N (δ∗, Σ∗), g(ξ∗,Σ∗δ∗)|ξ∗ ∈ B(Σ∗) is uniformly distributed,
and thus equal to 1−α with probability 0. The desired result then follows from an application
of the continuous mapping theorem as in the proof to Proposition C.3.

C.4 Auxiliary lemmas and proofs

Lemma C.1. Suppose (ξn,Σn)
d−→ (ξ∗,Σ∗), for ξ∗ ∼ N (δ∗, Σ∗) and Σ∗ ∈ S. Then, if B

satisfies Assumption 5,

PPn (ξn ∈ B(Σn)) −→ P (ξ∗ ∈ B(Σ∗)) .

63



Proof. By definition, ξn ∈ B(Σn) iff A(Σn)ξn ≤ b(Σn). Now, consider the function

h(ξ,Σ) = 1[A(Σ)ξ ≤ b(Σ)].

Note that since A(·) and b(·) are continuous by Assumption 5, h is continuous at all (ξ,Σ)

such that for all j, (A(Σ)ξ)j 6= b(Σ)j. However, the jth element of A(Σ∗)ξ∗ is normally
distributed with variance A(Σ∗)(j,·)Σ

∗A(Σ∗)′(j,·), where X(j,·) denotes the jth row of a matrix
X. Since A(Σ∗) has no non-zero rows by Assumption 5, and Σ∗ ∈ S implies that Σ∗ is positive
definite, A(Σ∗)(j,·)Σ

∗A(Σ∗)′(j,·) > 0. This implies that for each j, (A(Σ∗)ξ∗)j = b(Σ∗)j with
probability zero, and hence (A(Σ∗)ξ∗)j 6= b(Σ∗)j for all j with probability 1. Thus, h is
continuous at (ξ∗,Σ∗) for almost every ξ.

Since (ξn,Σn)
d−→ (ξ∗,Σ∗), the Continuous Mapping Theorem gives that 1[A(Σn)ξn ≤

b(Σn)]
d−→ 1[A(Σ∗)ξ∗ ≤ b(Σ∗)]. Since the indicator functions are bounded, it follows that

P (ξn ∈ B(Σn)) = E [1[A(Σn)ξn ≤ b(Σn)]] −→ E [1[A(Σ∗)ξ∗ ≤ b(Σ∗)]] = P (ξ∗ ∈ B(Σ∗)) ,

which completes the proof.

Lemma C.2. Suppose that (ξn,Σn)
d−→ (ξ∗,Σ∗), for ξ∗ ∼ N (δ∗, Σ∗) and Σ∗ ∈ S. Suppose

further that P (ξ∗ ∈ B(Σ∗)) = p∗ > 0 for B(Σ) satisfying Assumption 5. Then

ξn | ξn ∈ B(Σn)
d−→ ξ∗ | ξ∗ ∈ B(Σ∗).

Proof. By the Portmanteau Lemma (see Lemma 2.2. in van der Vaart (2000)),

ξn | ξn ∈ B(Σn)
d−→ ξ∗ | ξ∗ ∈ B(Σ∗)

iff E [f(ξn) | ξn ∈ B(Σn)] −→ E [f(ξ∗) | ξ∗ ∈ B(Σ∗)] for all bounded, continuous functions f .
Let f be a bounded, continuous function. Since (ξn,Σn)

d−→ (ξ∗,Σ∗), the Contin-
uous Mapping Theorem together with the Dominated Convergence Theorem imply that
E [g(ξn,Σn)]

p−→ E [g(ξ∗,Σ∗)] for any bounded function g that is continuous for almost every
(ξ∗,Σ∗). It follows that

E [f(ξn) · 1 [ξn ∈ B(Σn)]] −→ E [f (ξ∗) · 1 [ξ∗ ∈ B(Σ∗)]] ,

where we use the fact that the function 1[ξ ∈ B(Σ)] is continuous at (ξ∗,Σ∗) for almost every
ξ∗, as shown in the proof to Lemma C.1, and that the product of bounded and continuous
functions is bounded and continuous. Additionally, by Lemma C.1, we have that
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P (ξn ∈ B(ξn)) −→ P (ξ∗ ∈ B(Σ∗)) = p∗ > 0.

We can thus apply the Continuous Mapping Theorem to obtain

E [f(ξn) · 1 [ξn ∈ B(Σn)]]

P (ξn ∈ B(Σn))
−→ E [f (ξ∗) · 1 [ξ∗ ∈ B(Σ∗)]]

P (ξ∗ ∈ B(Σ∗))
,

which by the definition of the conditional expectation, implies

E [f(ξn) | ξn ∈ B(Σn)] −→ E [f(ξ∗) | ξ∗ ∈ B(Σ∗)] ,

as needed.

Lemma C.3. Suppose Assumptions 2-5 hold, and ns is an increasing sequence of sample
sizes such that

lim
s→∞

ΣPns = Σ∗,

lim
s→∞

δprePns ,ns
= δpre,∗,

lim
s→∞

PPns
(
β̂ns ∈ B(Σ̂ns)

)
= p∗ > 0

for Σ∗ ∈ S. Let δ+
ns =

(
δpostPns ,ns

0

)
be the vector with elements corresponding with δPns ,ns

for the post-period coefficients, and zeros for the pre-period coefficients. Likewise, let δ∗ =(
0

δpre,∗

)
be the vector with zeros for the post-period coefficients and δpre,∗ for the pre-period

coefficients. Then

(β̂ns − τP,ns − δ+
ns)|β̂ns ∈ B(Σ̂ns)

d−→ ξ∗|ξ∗ ∈ B(Σ∗)

and

(ξPns ,ns − δ
+
ns) | ξPns ,ns ∈ B(ΣPns )

d−→ ξ∗|ξ∗ ∈ B(Σ∗),

for ξ∗ ∼ N (δ∗, Σ∗).

Proof. By assumption, ξPns ∼ N
(
δPns , ΣPns

)
, and thus ξPns −δ+

ns ∼ N
(
δ−ns , ΣPns

)
. Since by
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construction δ−ns −→ δ∗ and ΣPns −→ Σ∗, it follows that ξPns−δ+
ns

d−→ ξ∗, for ξ∗ ∼ N (δ∗, Σ∗).
Convergence in distribution is equivalent to convergence in bounded Lipschitz metric, so

lim
s→∞

sup
f∈BL1

∣∣∣∣E [f(ξPns − δ
+
ns)
]
− E [f(ξ∗)]

∣∣∣∣ = 0. (26)

Additionally, Assumption 2 gives that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns [f(β̂ns − τPns ,ns)
]
− E

[
f(ξPns )

]∣∣∣∣∣∣ = 0.

Since the class of BL1 functions is closed under horizontal transformations, it follows that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns [f(β̂ns − τPns ,ns − δ
+
ns)
]
− E

[
f(ξPns − δ

+
ns)
]∣∣∣∣∣∣ = 0. (27)

Equations (26) and (27), together with the triangle inequality, imply that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns [f(β̂ns − τPns ,ns − δ
+
ns)
]
− E [f(ξ∗)]

∣∣∣∣∣∣ = 0, (28)

or equivalently, (β̂ns−τPns ,ns−δ+
ns)

d−→ ξ∗. By Assumption 5, the pre-test is invariant to shifts
that only affect the post-period coefficients, and so β̂ns ∈ B(Σ̂ns) iff (β̂ns − τns,Pns − δ+

ns) ∈
B(Σ̂ns). Lemma C.1 thus implies that lims→∞ PPns

(
β̂ns ∈ B(Σ̂ns)

)
= P (ξ∗ ∈ B(Σ∗)), and

hence P (ξ∗ ∈ B(Σ∗)) = p∗ > 0. We have thus shown that (β̂ns − τPns ,ns − δ+
ns , Σ̂ns)

d−→
(ξ∗,Σ∗), (ξPns − δ+

ns ,ΣPns )
d−→ (ξ∗,Σ∗), and P (ξ∗ ∈ B(Σ∗)) > 0. The result then follows

immediately from Lemma C.2.

Lemma C.4. Suppose that Assumptions 2-5 hold. Then for any increasing sequence of
sample sizes nq and corresponding data-generation processes Pnq such that

lim
q→∞
||δprePnq ,nq

|| =∞,

we have
lim
q→∞

PPnq
(
β̂nq ∈ B(Σ̂nq)

)
= 0.
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Proof. Towards contradiction, suppose that there exists a sequence nq such that

lim
q→∞
||δprePnq ,nq

|| =∞,

and

lim inf
q→∞

PPnq
(
β̂nq ∈ B(Σ̂nq)

)
> 0. (29)

Since S is compact, we can extract a subsequence nr along which ΣPnr → Σ∗ for some
Σ∗ ∈ S. Assumption 3 then implies that Σ̂nr

p−→ Σ∗.
By Assumption 5, Bpre(Σ) is bounded for every Σ. Let M̃(Σ) = supβpre∈Bpre(Σ) ||βpre||.

Assumption 5 implies that Bpre(Σ) is a compact-valued continuous correspondence, and so
M̃(Σ) is a continuous function by the theorem of the maximum. It follows that for any Σ

in a sufficiently small neighborhood of Σ∗, M̃(Σ) ≤ M̃(Σ∗) + 1 =: M̄ . Since Σ̂nr

p−→ Σ∗,
it follows that M̃(Σ̂nr) →p M̃(Σ∗), and thus for r sufficiently large, M̃(Σ̂nr) ≤ M̄ with
probability 1. Thus, for r sufficiently large, PPnr

(
β̂nr ∈ B(Σ̂nr)

)
≤ PPnr

(
β̂nr ∈ BM̄

)
, where

BM̄ = {(βpost, βpre) | ||βpre|| ≤ M̄}. It follows that

lim inf
r→∞

PPnr
(
β̂nr ∈ B(Σ̂nr)

)
≤ lim inf

r→∞
PPnr

(
β̂nr ∈ BM̄

)
= 1− lim sup

r→∞
PPnr

(
β̂nr ∈ Bc

M̄

)
.

We now show that lim supr→∞ PPnr
(
β̂nr ∈ Bc

M̄

)
= 1, which along with the display above

implies that lim infr→∞ PPnr
(
β̂nr ∈ B(Σ̂nr)

)
= 0, contradicting (29).

Consider the function h(β) = min(d(β,BM̄), 1), where for a set S we define d(β, S) =

inf β̃∈S ||β − β̃||. It is easily verified that h ∈ BL1, and that h(β) ≤ 1[β ∈ Bc
M̄

] for all β.
Thus,

lim sup
r→∞

PPnr
(
β̂nr ∈ Bc

M̄

)
≥ lim sup

r→∞
EPnr

[
h(β̂nr)

]
. (30)

Note that d(β̂, BM̄) depends only on the components of β̂ corresponding with the pre-period,

and thus h(β̂) = h(β̂ − τ) for any value τ =

(
τpost

0

)
that has zeros in the positions

corresponding with βpre. This, along with Assumption 2, implies that
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lim
r→∞

∣∣∣∣∣∣EPnr [h(β̂nr)
]
− E

[
h(ξPnr ,nr)

]∣∣∣∣∣∣ = 0.

Using the triangle inequality and the fact that h is a non-negative function, we have

EPnr
[
h(β̂nr)

]
≥ E

[
h(ξPnr ,nr)

]
−
∣∣∣∣∣∣EPnr [h(β̂nr)

]
− E

[
h(ξPnr ,nr)

]∣∣∣∣∣∣ .
It then follows that

lim sup
r→∞

EPnr
[
h(β̂nr)

]
≥ lim sup

r→∞
E
[
h(ξPnr ,nr)

]
. (31)

Now, since limr→∞ ||δprePnr ,nr
|| = ∞, there exists at least one component j of δprePnr ,nr

that
diverges. Let δprej,r denote the jth element of δprePnr ,nr

, and suppose WLOG that δprej,r → ∞.
Likewise, let ξprej,r denote the jth element of ξprePnr ,nr

. Note that h(ξPnr ,nr) = 1 whenever
ξprej,r > M̄ + 1, and thus E

[
h(ξPnr ,nr)

]
≥ E

[
1[ξprej,r > M̄ + 1]

]
. Hence,

lim sup
r→∞

E
[
h(ξPnr ,nr)

]
≥ lim sup

r→∞
E
[
1[ξprej,r > M̄ + 1]

]
. (32)

Since ξprej,r ∼ N
(
δprej,r , σ

2
j,r

)
, for σ2

j,r the jth diagonal element of ΣPnr , we have

E
[
1[ξprej,r > M̄ + 1]

]
= 1− Φ

(
M̄ + 1− δprej,r

σj,r

)
.

However, by construction σj,r → σ∗j as r → ∞, where σ∗2j is the jth diagonal ele-
ment of Σ∗. Additionally, σ∗j > 0 by Assumption 4. Thus, since δprej,r → ∞, we have that

Φ
(
M̄+1−δprej,r

σj,r

)
→ 0, and hence E

[
1[ξprej,r > M̄ + 1]

]
→ 1. This, combined with the inequalities

(30), (31), (32), gives the desired result.

Lemma C.5. Suppose Assumptions 2-5 hold. Consider a subsequence of increasing sample
sizes, ns, such that
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lim
s→∞

ΣPns = Σ∗, (33)

lim
s→∞

δprePns ,ns
= δpre,∗, (34)

lim
s→∞

PPns
(
β̂ns ∈ B(Σ̂ns)

)
= p∗ > 0 (35)

for Σ∗ ∈ S. Then

lim
s→∞

∣∣∣∣E [ξPns ,ns − δ+
ns | ξPns ,ns ∈ B(ΣPns )

]
− E [ξ∗ | ξ∗ ∈ B(Σ∗)]

∣∣∣∣ = 0,

for ξ∗ ∼ N (δ∗, Σ∗) , where δ∗ =

(
0

δpre,∗

)
and δ+

ns =

(
δpostPns ,ns

0

)
Proof. Let ξj,s denote the jth element of ξPns ,ns−δ+

ns . We show that E
[
ξj,s | ξPns ,ns ∈ B(Σ̂Pns )

]
−→

E
[
ξ∗j | ξ∗ ∈ B(Σ∗)

]
for each element j, which implies the desired result.

Note that ξPns ,ns ∼ N
(
δPns ,ns , ΣPns

)
, so ξPns ,ns − δ+

ns ∼ N
(
δ−ns , ΣPns

)
, where δ−ns =(

0

δprePns ,ns

)
. Since by construction δ−ns −→ δ∗ and ΣPns −→ Σ∗, it follows that ξPns ,ns −

δ+
ns

d−→ ξ∗. The continuous mapping theorem then gives that (ξPns ,ns − δ+
ns) · 1[ξPns ,ns ∈

B(Σ̂Pns )]
d−→ ξ∗1[ξ∗ ∈ B(Σ∗)], where the function is continuous for almost every ξ∗ as shown

in the proof to Lemma C.1, and we use the fact that ξPns ,ns ∈ B(Σ̂Pns ) iff ξPns ,ns − δ+
ns ∈

B(Σ̂Pns ) by Assumption 5. Next, observe that

|ξj,s · 1[ξPns ,ns ∈ B(Σ̂Pns )]| ≤ |ξj,s|.

Since the absolute value function is continuous and ξj,s
d−→ ξ∗j , |ξj,s|

d−→ |ξ∗j | by the contin-
uous mapping theorem. Further, each |ξj,s| has a folded-normal distribution, as does |ξ∗j |,
and since the mean of a folded-normal distribution is finite and continuous in the mean and
variance parameters, we have E [|ξj,s|]→ E

[
|ξ∗j |
]
<∞. Thus, by the generalized dominated

convergence theorem,

E
[
ξj,s · 1[ξPns ,ns ∈ B(Σ̂Pns )]

]
d−→ E

[
ξ∗j · 1[ξ∗ ∈ B(Σ∗)]

]
.

However, by Lemma C.1 we have that

P
(
ξPns ∈ B(Σ̂Pns ,ns)

)
−→ P (ξ∗ ∈ B(Σ∗)) = p∗ > 0.

Thus, by the continuous mapping theorem,
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E
[
ξj,s · 1[ξPns ∈ B(Σ̂Pns )]

]
P
(
ξPns ,ns ∈ B(Σ̂Pns )

) −→
E
[
ξ∗j · 1[ξ∗ ∈ B(Σ∗)]

]
P (ξ∗ ∈ B(Σ∗))

,

as we wished to show.

Lemma C.6. Suppose that a sequence of random variables Yn is asymptotically uniformly
integrable,

lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn|| > M ]] = 0.

If cn is a sequence of constants with cn → c and Yn − cn converges in distribution, then
Yn − cn is also asymptotically uniformly integrable.

Proof. Note that ||Yn − cn|| ≤ ||Yn||+ ||cn||. Thus,

lim
M→∞

lim sup
n→∞

E [||Yn − cn|| · 1[||Yn − cn|| > M ]] ≤

lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn − cn|| > M ]] + lim
M→∞

lim sup
n→∞

E [||cn|| · 1[||Yn − cn|| > M ]] .

(36)

We now show that each of the two terms on the right hand side of (36) is zero. To see
why the first term is zero, note that since cn → c, for n sufficiently large, ||cn|| ≤ ||c+1||. By
the triangle inequality, ||Yn−cn|| ≤ ||Yn||+ ||cn|| and so for n sufficiently large, 1[||Yn−cn|| >
M ] ≤ 1[||Yn|| > M − ||c+ 1||]. Thus,

lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn − cn|| > M ]] ≤ lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn|| > M − ||c+ 1||]]

= lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn|| > M ]] ,

and limM→∞ lim supn→∞ E [||Yn|| · 1[||Yn|| > M ]] = 0 by assumption.
To show that the second term in (36) is zero, note again that since cn −→ c, for n

sufficiently large, ||cn|| ≤ ||c+ 1||, and thus

lim
M→∞

lim sup
n→∞

E [||cn|| · 1[||Yn − cn|| > M ]] ≤ ||c+ 1|| lim
M→∞

lim sup
n→∞

E [1[||Yn − cn|| > M ]] .

However, since Yn − cn converges in distribution, Prohorov’s theorem gives that Yn − cn is
uniformly tight, so

lim
M→∞

lim sup
n→∞

E [1[||Yn − cn|| > M ]] = 0.
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Lemma C.7. Suppose Assumption 5 holds. Suppose that τ =

(
τpost

0

)
has zeros in the

positions corresponding with β̂pre. Then for any β̂ and Σ̂,

b̂α(β̂ − τ, Σ̂) = b̂α(β̂, Σ̂)− η′τ.

Proof. Recall that for any values (β̃, Σ̃), b̂α(β̃, Σ̃) solves

Φ

(
η′β̃ − b̂α

σ̃

)
− Φ

(
V −(Z̃, Σ̃)− b̂α

σ̃

)

Φ

(
V +(Z̃, Σ̃)− b̂α

σ̃

)
− Φ

(
V −(Z̃, Σ̃)− b̂α

σ̃

) = 1− α, (37)

where Z̃ is shorthand for Z(β̃, Σ̃) = (I − c̃η′)β̃, for c̃ = Σ̃η′/(η′Σ̃η), σ̃ =

√
η′Σ̃η, and the

functions V + and V − are as defined in Lemma B.2 (replacing Σ with Σ̃). Let β̂∗ = β̂ − τ ,
Ẑ = Z(β̂, Σ̂), and Ẑ∗ = Z(β̂∗, Σ̂). We now show that

(i) V −(Ẑ∗, Σ̂) = V −(Ẑ, Σ̂)− η′τ

(ii) V +(Ẑ∗, Σ̂) = V −(Ẑ, Σ̂)− η′τ

(iii) η′β̂∗ = η′β̂ − η′τ ,

which together imply that b̂α solves (37) for (β̂, Ẑ) iff b̂∗α = b̂α − η′τ solves (37) for (β̂∗, Ẑ∗),
from which the claim follows.

To establish (i), note that Ẑ∗ − Ẑ = −(I − ĉη′)

(
τpost

0

)
, where ĉ depends only on Σ̂

and η, and not on β̂. From this we see that

AẐ∗ = AẐ + A(Ẑ∗ − Ẑ)

= AẐ − A(I − ĉη′)

(
τpost

0

)

= AẐ + (Aĉ)η′

(
τpost

0

)
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where A

(
τpost

0

)
= 0 since A = [0, Apost]. Additionally, from the definition of V −,

V −(Ẑ, Σ̂) = max
{j:(Aĉ)j<0}

bj − (AẐ)j
(Aĉ)j

.

It follows from the previous two displays that V −(Ẑ∗) = V −(Ẑ)−η′
(
τpost

0

)
. An analogous

argument establishes (ii), and (iii) follows immediately from the definition of β̂∗.

Lemma C.8. Fix η 6= 0. For any (β̂, Σ̂) and x ∈ R, let FΞ(β̂,Σ̂)

x,η′Σ̂η
(·) denote the CDF of a

N
(
x, η′Σ̂η

)
variable truncated to the set Ξ(β̂, Σ̂) = [V −(Z(β̂, Σ̂), Σ̂), V +(Z(β̂, Σ̂), Σ̂)], where

the functions V −, V +, and Z are as defined in Lemma C.10 below. Define g(β̂, Σ̂, δ) =

F
Ξ(β̂,Σ̂)

η′δ,η′Σ̂η
(η′β̂). Then b̂α(β̂, Σ̂) ≤ η′δ iff g(β̂, Σ̂, δ) ≤ 1− α.

Proof. By definition, b̂α solves:

F
Ξ(β̂,Σ̂)

b̂α,η′Σ̂η
(η′β̂) = 1− α.

However, FΞ(β̂,Σ̂)

x,η′Σ̂η
(η′β̂) is weakly decreasing in x (see, e.g. Lemma A.1 in Lee et al. (2016)),

from which the result follows immediately.

Lemma C.9. Suppose Σ is a positive definite matrix such that for some j, (Ac)j = 0 for c =

Ση/(η′Ση). Let ξ ∼ N (δ, Σ) and Z = (I−cη′)ξ. Let B = {β |Aβ ≤ b} such that P (ξ ∈ B) >

0. Assume further that none of the rows of A are zero. Then P (bj − (AZ)j > 0 | ξ ∈ B) = 1.

Proof. By Lemma 5.1 in Lee et al. (2016), ξ ∈ B only if bj − (AZ)j ≥ 0. It thus suffices to
show that P ((Az)j = bj | ξ ∈ B) = 0. Note that

(AZ)j = (A(j,·) − (Ac)jη
′)ξ

= A(j,·)ξ

where A(j,·) denotes the jth row of A, and we use the fact that (Ac)j = 0. Since by as-
sumption Σ is positive definite and A(j,·) 6= 0, it follows that (Az)j = A(j,·)ξ is normal with
variance A(j,·)ΣA

′
(j,·) > 0. Hence, P ((Az)j = bj) = 0. Since P (ξ ∈ B) > 0, it follows that

P ((Az)j = bj | ξ ∈ B) = 0, as needed.

Lemma C.10. Fix η 6= 0. Let ξ∗ ∼ N (δ∗, Σ∗) for Σ∗ ∈ S such that P (ξ∗ ∈ B(Σ∗)) =

p∗ > 0. Let Z(ξ,Σ) = (I − c(Σ)η′)ξ for c(Σ) = Ση/(η′Ση), and let V −(Z,Σ) and V +(Z,Σ)
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be as defined in Lemma B.2. Suppose B(Σ) satisfies Assumption 5. Then for almost every
ξ∗ | ξ∗ ∈ B(Σ∗),

(i) V −(Z(ξ,Σ),Σ) is continuous at (ξ∗,Σ∗) as a function into R∪{−∞}, where we define
the max over the empty set to be −∞.

(ii) V +(Z(ξ,Σ),Σ) is continuous at (ξ∗,Σ∗) as a function into R ∪ {∞} for almost every
ξ | ξ ∈ B(Σ), where we define the min over the empty set to be ∞.

(iii) V −(Z(ξ∗,Σ∗),Σ∗) < V +(Z(ξ∗,Σ∗),Σ∗).

Proof. To prove (i), begin by fixing a value ξ∗. Consider a sequence (ξh,Σh) that converges
to (ξ∗,Σ∗) as h → ∞. Let zh = Z(ξh,Σh), and note that zh −→ z∗ := Z(ξ∗,Σ∗), since the
function Z is clearly continuous for values of Σ where the denominator in c(Σ) is non-zero,
i.e. when η′Ση > 0, and this holds for Σ∗ since Σ∗ ∈ S and thus positive definite.

Suppose first that there is no j such that (A(Σ∗)c(Σ∗))j = 0. The function A(Σ) is
continuous at Σ∗ by Assumption 5, and we just argued that c(Σ) is continuous at Σ∗ as well.
Thus, for h sufficiently large, {((A(Σh)c(Σh))j > 0} = {((A(Σ∗)c(Σ∗))j > 0}. Likewise, the
function b(Σ) is continuous at Σ∗ by Assumption 5, and so (bj(Σ)−(AZ(ξ,Σ))j)/(A(Σ)c(Σ))j

is continuous at (ξ∗,Σ∗), from which it follows that

max
{j:(A(Σh)c(Σh))j<0}

b(Σh)j − (A(Σh)zh)j
(A(Σh)c(Σh))j

→ max
{j:(A(Σ∗)c(Σ∗))j<0}

b(Σ∗)j − (A(Σ∗)z∗)j
(A(Σ∗)c(Σ∗))j

(38)

when {((A(Σ∗)c(Σ∗))j > 0} is non-empty. By an analogous argument, if {((A(Σ∗)c(Σ∗))j >

0} is empty, then for h sufficiently large, {((A(Σh)c(Σh))j > 0} is empty as well, and so (38)
holds regardless of whether {((A(Σ∗)c(Σ∗))j > 0} is empty.

Now, let J = {j | ((A(Σ∗)c(Σ∗))j = 0}. Note that by the same argument as in the
previous paragraph,

max
{j 6∈J :(A(Σh)c(Σh))j<0}

b(Σh)j − (A(Σh)zh)j
(A(Σh)c(Σh))j

→ max
{j:(A(Σ∗)c(Σ∗))j<0}

b(Σ∗)j − (A(Σ∗)z∗)j
(A(Σ∗)c(Σ∗))j

. (39)

Additionally, by Lemma C.9, for j ∈ J , (b(Σ∗)j − A(Σ∗)z∗)j > 0 for almost every value of
ξ∗. For such a ξ∗, it follows from the continuous mapping theorem that for h sufficiently
large, (b(Σh) − A(Σh)zh)j > 0. Thus for any j ∈ J and any subsequence {h1} ⊂ {h} for
which (A(Σh1)c(Σh1))j < 0, we have
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b(Σh1)j − (A(Σh1)zh1)j
(A(Σh1)c(Σh1))j

→ −∞.

This implies that

max
{j∈J :(A(Σh)c(Σh))j<0}

b(Σh)j − (A(Σh)zh)j
(A(Σh)c(Σh))j

→ −∞,

and thus

lim
h→∞

max
{j 6∈J :(A(Σh)c(Σh))j<0}

b(Σh)j − (A(Σh)zh)j
(A(Σh)c(Σh))j

= lim
h→∞

max
{j:(A(Σh)c(Σh))j<0}

b(Σh)j − (A(Σh)zh)j
(A(Σh)c(Σh))j

.

Result (i) then follows from (39). The proof of result (ii) is analogous to that for proof (i),
replacing max with min and −∞ with ∞. Result (iii), that V − < V +, follows from the
same argument as in the proof of Lemma B.2.

Lemma C.11. Let g̃(ξ,Σ, V −, V +, δ) = F
[V −,V +]
η′δ,η′Ση (η′ξ). Then g̃ is continuous in (ξ,Σ, V −, V +, δ)

on the set {(ξ,Σ, V −, V +, δ) | ξ ∈ RK+M ,Σ ∈ B(S), V − ∈ R ∪ {−∞}, V + ∈ R ∪ {∞}, δ ∈
RK+M}, for B(S) an open set of positive definite matrices containing S.

Proof. By definition,

g̃(ξ,Σ, V −, V +, δ) =

Φ

(
η′ξ − η′δ

σ

)
− Φ

(
V − − η′δ

σ

)
Φ

(
V + − η′δ

σ

)
− Φ

(
V − − η′δ

σ

) ,
for σ =

√
η′Ση. Since Σ ∈ B(S) implies that Σ is full rank, and hence σ > 0, it is immediate

from the functional form that g̃ is continuous when all of the values are finite.
Moreover, for V − finite and (ξ,Σ, V −, δ) fixed,

lim
V +→∞

Φ

(
η′ξ − η′δ

σ

)
− Φ

(
V − − η′δ

σ

)
Φ

(
V + − η′δ

σ

)
− Φ

(
V − − η′δ

σ

) =

Φ

(
η′ξ − η′δ

σ

)
− Φ

(
V − − η′δ

σ

)
Φ
(∞
σ

)
− Φ

(
V − − η′δ

σ

) .

Moreover, for V + finite and (ξ,Σ, V +, δ) fixed,
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lim
V −→−∞

Φ

(
η′ξ − η′δ

σ

)
− Φ

(
V − − η′δ

σ

)
Φ

(
V + − η′δ

σ

)
− Φ

(
V − − η′δ

σ

) =

Φ

(
η′ξ − η′δ

σ

)
− Φ

(
−∞
σ

)
Φ

(
V + − η′δ

σ

)
− Φ

(
−∞
σ

) .
Finally, for (ξ,Σ, δ) fixed,

lim
(V −,V +)→(−∞,∞)

Φ

(
η′ξ − η′δ

σ

)
− Φ

(
V − − η′δ

σ

)
Φ

(
V + − η′δ

σ

)
− Φ

(
V − − η′δ

σ

) =

Φ

(
η′ξ − η′δ

σ

)
− Φ

(
−∞
σ

)
Φ
(∞
σ

)
− Φ

(
−∞
σ

) .

Lemma C.12. Suppose the function B(Σ) satisfies Assumption 5. Let ξ∗ ∼ N (δ∗, Σ∗) for
Σ∗ ∈ S such that P (ξ∗ ∈ B(Σ∗)) = p > 0. Then g(ξ∗,Σ∗, δ∗) is continuous for almost every
ξ∗ | ξ∗ ∈ B(Σ∗) for the function g as defined in Lemma C.8.

Proof. Observe that

g(ξ,Σ, δ) = g̃(ξ,Σ, V −(ξ,Σ), V +(ξ,Σ), δ),

for the function g̃ as defined in Lemma C.11. Lemma C.10 gives that for almost every
value of ξ∗ | ξ∗ ∈ B(Σ∗), the functions V − and V + are continuous in (ξ,Σ) at (ξ∗,Σ∗) with
V −(ξ∗,Σ∗) < V +(ξ∗,Σ∗). Lemma C.11 gives that g̃ is continuous on {(ξ,Σ, V −, V +, δ) | ξ ∈
RK+M ,Σ ∈ B(S), V − ∈ R∪{−∞}, V + ∈ R∪{∞}, δ ∈ ∆}, for B(S) an open set containing
S. The result then follows immediately from the fact that the composition of continuous
functions is continuous.

D Power Calculations Under Stochastic Differential Trends

This section considers data-generating processes in which there are stochastic differential
trends between the treated and control groups. In particular, we consider the following
hierarchical model:

δ ∼ N (0, V ) (40)

β̂ | δ ∼ N (δ + τ, Σ) . (41)
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The distribution for β̂|δ in (41) is identical to the model considered in Section 3. However,
we now treat δ as stochastic, rather than as a fixed parameter (e.g. linear in event-time).
Treating δ as stochastic is sensible in situations in which we think that there may be common
shocks to the treated and control groups (e.g. if each of these is a state, and there are macro-
level shocks).

I now evaluate the power of pre-tests against such stochastic shocks in data-generating
processes calibrated to the sample of papers reviewed in Section 4. For a given value of
(V,Σ), we define the power of the pre-test to be the probability, Pδ,β̂

(
β̂pre ∈ B(Σ)

)
, where

Pδ,β̂ (·) denotes the probability taken over the realization of the joint distribution of (δ, β̂).
We explicitly write the pre-test acceptance region as B(Σ) to denote that the pre-test region
depends on Σ (but not V ). We again set Σ to be the estimated variance-covariance matrix
from each of the papers in the sample. Calibrating the covariance matrix V for the common
stochastic shocks is more difficult, as it cannot be consistently estimated from the data. For
simplicity, I set V = c ·Σ for a constant c > 0. Under this specification, the marginal distri-
bution of β̂ under the hierarchical model defined above is N (0, (1 + c)Σ). The parameter c
can thus be interpreted as the factor by which we have underestimated the variance matrix
by treating δ as fixed and ignoring common stochastic shocks.

I then calculate the values of c for which the pre-test rejects 50 or 80% percent of the
time, which I denote c0.5 and c0.8. As in Section 4, I use the pre-test criterion that no pre-
period coefficient is significant at the 95% level. I compute the null rejection probabilities of
conventional confidence intervals for the average post-treatment effect τ̄ and the first-period
treatment effect τ1 under the DGPs with c0.5 and c0.9. The null rejection probabilities are
computed over the joint distribution of (β̂, δ).19 As in Section 4, I report these probabilities
both unconditionally, and conditional on surviving the pre-test. Tables 5 and 6 show the
results for τ1 and τ̄ , respectively. Across all specifications, the null rejection probabilities
substantially exceed the nominal level of 5% for most of the papers. Conditioning on pass-
ing the pre-test generally reduces the null rejection probability, but only moderately so in
most cases. Conditional on passing the pre-test, null rejection probabilities are often many
multiples of the nominal size. The results thus suggest that conventional pre-tests may be
underpowered against detecting common stochastic shocks, in addition to the linear secular
trends considered in the main text.

I do not report results for bias as in the main text, since δ is mean-zero and so β̂ is
unbiased when the expectation is taken over the joint distribution of (β̂, δ).

19Recall that β̂ ∼ N (0, (1 + c)Σ). Thus, this is the probability that τ falls inside a confidence interval
based on the assumption that β̂ ∼ N (τ, Σ) distribution when in fact β̂ ∼ N (τ, (1 + c)Σ).
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Conditional on passing pre-test?
No Yes

Scaling factor for stochastic variance
c0.5 c0.8 c0.5 c0.8

Bailey and Goodman-Bacon (2015) 0.17 0.34 0.16 0.33
Bosch and Campos-Vazquez (2014) 0.19 0.38 0.12 0.27
Deryugina (2017) 0.19 0.38 0.04 0.09
Deschenes et al. (2017) 0.17 0.35 0.10 0.19
Fitzpatrick and Lovenheim (2014) 0.23 0.45 0.21 0.43
Gallagher (2014) 0.14 0.30 0.12 0.26
He and Wang (2017) 0.26 0.48 0.23 0.46
Kuziemko et al. (2018) 0.29 0.55 0.20 0.42
Lafortune et al. (2017) 0.19 0.38 0.18 0.37
Markevich and Zhuravskaya (2018) 0.22 0.44 0.18 0.38
Tewari (2014) 0.10 0.22 0.08 0.18
Ujhelyi (2014) 0.22 0.43 0.18 0.36

Table 5: Null Rejection Probabilities for Nominal 5% Test of Average Treatment Effect
Under Stochastic Trends Against Which We Have 50 or 80% Power

Note: This table shows null rejection probabilities for nominal 5% significant level tests using data-generating
processes under which there are stochastic violations of parallel trends that conventional pre-tests would
detect 50 or 80% of the time (c0.5 and c0.8). The first two columns show unconditional null rejection
probabilities, whereas the latter two columns condition on passing the pre-test. The estimand is the average
of the post-treatment causal effects, τ̄ . See Section D for details on the data-generating process.
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Conditional on passing pre-test?
No Yes

Scaling factor for stochastic variance
c0.5 c0.8 c0.5 c0.8

Bailey and Goodman-Bacon (2015) 0.17 0.34 0.14 0.30
Bosch and Campos-Vazquez (2014) 0.19 0.38 0.17 0.35
Deryugina (2017) 0.19 0.38 0.13 0.29
Deschenes et al. (2017) 0.17 0.35 0.11 0.22
Fitzpatrick and Lovenheim (2014) 0.23 0.45 0.22 0.44
Gallagher (2014) 0.14 0.30 0.08 0.19
He and Wang (2017) 0.26 0.48 0.23 0.45
Kuziemko et al. (2018) 0.29 0.55 0.21 0.45
Lafortune et al. (2017) 0.19 0.38 0.18 0.37
Markevich and Zhuravskaya (2018) 0.22 0.44 0.17 0.36
Tewari (2014) 0.10 0.22 0.08 0.19
Ujhelyi (2014) 0.22 0.43 0.17 0.35

Table 6: Null Rejection Probabilities for Nominal 5% Test of First Period Treatment Effect
Under Stochastic Trends Against Which We Have 50 or 80% Power

Note: This table shows null rejection probabilities for nominal 5% significant level tests using data-generating
processes under which there are stochastic violations of parallel trends that conventional pre-tests would
detect 50 or 80% of the time (c0.5 and c0.8). The first two columns show unconditional null rejection
probabilities, whereas the latter two columns condition on passing the pre-test. The estimand is the causal
effect for the first period after treatment, τ1. See Section D for details on the data-generating process.
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E Additional tables and figures

Figure D1: Comparing size in published studies when requiring an insignificant pre-trend
versus publishing everything

Note: Each figure shows the size (null rejection probability) in published work in the setting described
in Section 2.3 as a function of the fraction of latent studies in which parallel trends is violated (θ). The
Insignificant Pre-trend regime only publishes studies in which β̂−1 is statistically insignificant. The two
panels show results for different values of the slope of the differential trend (γ) when parallel trends fails.
See Section 2.3 for further detail.
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Conditional on passing pre-test?
No Yes

Slope of differential trend:
γ0.5 γ0.8 γ0.5 γ0.8

Bailey and Goodman-Bacon (2015) 0.06 0.09 0.07 0.13
Bosch and Campos-Vazquez (2014) 0.12 0.22 0.08 0.11
Deryugina (2017) 0.07 0.09 0.09 0.21
Deschenes et al. (2017) 0.06 0.06 0.05 0.08
Fitzpatrick and Lovenheim (2014) 0.10 0.18 0.13 0.26
Gallagher (2014) 0.05 0.06 0.04 0.05
He and Wang (2017) 0.15 0.29 0.21 0.47
Kuziemko et al. (2018) 0.13 0.22 0.07 0.11
Lafortune et al. (2017) 0.19 0.41 0.17 0.34
Markevich and Zhuravskaya (2018) 0.11 0.19 0.17 0.42
Tewari (2014) 0.06 0.07 0.06 0.11
Ujhelyi (2014) 0.09 0.15 0.12 0.28

Table D1: Null Rejection Probabilities for Nominal 5% Test of First Period Treatment Effect
Under Linear Trends Against Which We Have 50 or 80% Power

Note: This table shows null rejection probabilities for nominal 5% significant level tests using data-generating
processes under which there are linear violations of parallel trends that conventional pre-tests would detect
50 or 80% of the time (γ0.5 and γ0.8). The first two columns show unconditional null rejection probabilities,
whereas the latter two columns condition on passing the pre-test. The estimand is the treatment effect in
the first period after treatment, τ1.

83



References

Andrews, I. and Kasy, M. (2019). Identification of and Correction for Publication Bias.
American Economic Review, 109(8):2766–2794.

Andrews, I., Kitagawa, T., and McCloskey, A. (2018). Inference on winners. Technical Report
CWP31/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

Cartinhour, J. (1990). One-dimensional marginal density functions of a truncated mul-
tivariate normal density function. Communications in Statistics-theory and Methods -
COMMUN STATIST-THEOR METHOD, 19:197–203.

Lee, J. D., Sun, D. L., Sun, Y., and Taylor, J. E. (2016). Exact post-selection inference,
with application to the lasso. The Annals of Statistics, 44(3):907–927.

Pfanzagl, J. (1994). Parametric Statistical Theory. W. de Gruyter. Google-Books-ID:
1S20QgAACAAJ.

Saumard, A. and Wellner, J. A. (2014). Log-concavity and strong log-concavity: A review.
arXiv:1404.5886 [math, stat].

van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes:
With Applications to Statistics. Springer Science & Business Media. Google-Books-ID:
seH8dMrEgggC.

van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press. Google-
Books-ID: UEuQEM5RjWgC.

84


	Introduction
	Stylized Model
	Stylized model set-up
	Conventional estimates and CIs after pre-testing 
	Implications of publication rules that require pre-testing

	Theory: Pre-testing in a more general model
	Model
	Bias After Pre-testing
	Sufficient conditions for bias exacerbation
	Unbiasedness after pre-testing when parallel trends holds

	Pre-testing reduces the variance of estimates

	The practical relevance of pre-testing distortions: evidence from a review of recent papers
	Selecting the sample of papers
	What pre-tests are researchers using?
	Evaluating power and pre-test bias in practice

	Alternative Approaches
	Parametric Approaches 
	Alternative relaxations of the parallel trends assumption
	Recommendations

	Conclusion
	Proofs for Results in the Main Text
	Pre-test Corrected Parametric Approaches
	Construction of the corrected estimator and CIs
	Correcting for a pre-test with a fixed specification
	Correcting for specification search using pre-trends 

	Computing  For Common Pre-tests 
	Calculating (z) for polyhedral pre-tests
	Calculating (z) for quadratic pre-tests
	Calculating (z) after model selection
	Proofs for the results on (z)


	Uniform Asymptotic Results
	Assumptions
	Main uniformity results
	Proofs for main uniformity results
	Auxiliary lemmas and proofs

	Power Calculations Under Stochastic Differential Trends
	Additional tables and figures

