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Abstract

When studying an outcome Y that is weakly-positive but can equal zero (e.g. earnings),
researchers frequently estimate an average treatment effect (ATE) for a “log-like” transformation
that behaves like logpY q for large Y but is defined at zero (e.g. logp1`Y q, arcsinhpY q). We argue
that ATEs for log-like transformations should not be interpreted as approximating percentage
effects, since unlike a percentage, they depend on the units of the outcome. In fact, we show
that if the treatment affects the extensive margin, one can obtain a treatment effect of any
magnitude simply by re-scaling the units of Y before taking the log-like transformation. This
arbitrary unit-dependence arises because an individual-level percentage effect is not well-defined
for individuals whose outcome changes from zero to non-zero when receiving treatment, and the
units of the outcome implicitly determine how much weight the ATE for a log-like transformation
places on the extensive margin. We further establish a trilemma: when the outcome can equal
zero, there is no treatment effect parameter that is an average of individual-level treatment
effects, unit-invariant, and point-identified. We discuss several alternative approaches that may
be sensible in settings with an intensive and extensive margin, including (i) expressing the ATE
in levels as a percentage (e.g. using Poisson regression), (ii) explicitly calibrating the value
placed on the intensive and extensive margins, and (iii) estimating separate effects for the two
margins (e.g. using Lee bounds). We illustrate these approaches in three empirical applications.

∗An earlier draft of this paper was titled “Log-like? Identified ATEs defined with zero-valued outcomes are
(arbitrarily) scale-dependent.” We thank Isaiah Andrews, Kirill Borusyak, Jonathan Cohn, Amy Finkelstein, Edward
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UCLA, UCSD, and the SEA annual conference for helpful comments and suggestions. Bruno Lagomarsino provided
superb research assistance.
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1 Introduction

When the outcome of interest Y is strictly positive, researchers often estimate an average treatment
effect (ATE) in logs of the form EP rlogpY p1qq ´ logpY p0qqs, which has the appealing feature that
its units approximate percentage changes in the outcome.1 A practical challenge in many economic
settings, however, is that the outcome may sometimes equal zero, and thus the ATE in logs is not
well-defined. When this is the case, it is common for researchers to estimate ATEs for alternative
transformations of the outcome such as logp1`Y q or arcsinhpY q “ log

`?
1 ` Y 2 ` Y

˘

, which behave
similarly to logpY q for large values of Y but are well-defined at zero. The treatment effects for these
alternative transformations are typically interpreted like the ATE in logs, i.e. as (approximate)
average percentage effects. For example, among the 11 papers published in the American Economic
Review since 2018 that interpret a treatment effect for arcsinhpY q, all but one interpret the result
as a percentage effect or elasticity.2

The main point of this paper is that identified ATEs that are well-defined with zero-valued out-
comes should not be interpreted as percentage effects, at least if one imposes the logical requirement
that a percentage effect does not depend on the baseline units in which the outcome is measured
(e.g. dollars, cents, or yuan).

Our first main result shows that if mpyq is a function that behaves like logpyq for large values
of y but is defined at zero, then the ATE for mpY q will be arbitrarily sensitive to the units of Y .
Specifically, we consider continuous, increasing functions mp¨q that approximate logpyq for large
values of y in the sense that mpyq{ logpyq Ñ 1 as y Ñ 8. The common logp1 ` yq and arcsinhpyq

transformations satisfy this property. We show that if the treatment affects the extensive margin
(i.e. P pY p1q “ 0q ‰ P pY p0q “ 0q), then one can obtain any magnitude for the ATE for mpY q by
rescaling the outcome by some positive factor a. It is therefore inappropriate to interpret the ATE
for mpY q as a percentage effect, since a percentage is inherently a unit-invariant quantity, while the
ATE for mpY q depends arbitrarily on the units of Y .

The intuition for this result is that a “percentage” treatment effect is not well-defined for an
individual for whom treatment increases their outcome from zero to a positive value. For example,
in our application to Carranza et al. (2022) in Section 5, the treatment induces more people to have
positive hours worked. The percentage change in hours is then not well-defined for individuals who
would work positive hours under the treatment condition but zero hours under the control condition.
Any average treatment effect that is well-defined with zero-valued outcomes must therefore implicitly
assign a value for a change along the extensive margin. For logarithm-like transformations mp¨q, the
importance of the extensive margin is determined implicitly by the units of Y . To see why this is
the case, consider an individual who works positive hours only if they are treated, so that Y p1q ą 0

and Y p0q “ 0. Their treatment effect for the transformed outcome mpY q is mpY p1qq ´mp0q, which
becomes larger if the units of Y are re-scaled by some a ą 1, e.g. if we convert from weekly hours

1That is, logpY p1q{Y p0qq «
Y p1q´Y p0q

Y p0q
when Y p1q{Y p0q « 1.

2We found 17 papers overall using arcsinhpY q as an outcome variable, of which 11 interpret the units; see Appendix
Table 1.
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worked to yearly hours worked. When the treatment has an extensive margin effect, the ATE for
mpY q can thus be made large in magnitude by re-scaling Y by a large factor a. By contrast, if
we re-scale Y by a small factor a « 0, such that the resulting outcomes are close to zero, then
mpY q « mp0q, and so the ATE for mpY q will be small. By varying the units of the outcome, we
can thus obtain any magnitude for the ATE for mpY q.

Our theoretical results also imply that if we re-scale the units of the outcome by a finite factor
a ą 0, the ATE for a log-like transformation mpY q will change by approximately logpaq times
the effect of the treatment on the extensive margin. This result implies that sensitivity analyses
that explore how the estimated ATE for mpY q changes with finite changes in the units of Y —or
equivalently, how the ATE for logpc ` Y q changes with the constant c—are essentially indirectly
measuring the size of the treatment effect on the extensive margin.

We illustrate the practical importance of these results by systematically replicating recent
papers published in the American Economic Review that estimate treatment effects for arcsinh-
transformed outcomes. In line with our theoretical results, we find that treatment effect estimates
using arcsinhpY q are sensitive to changes in the units of the outcome, particularly when the exten-
sive margin effect is large. In half of the papers that we replicated, multiplying the original outcome
by a factor of 100 (e.g. converting from dollars to cents) changes the estimated treatment effect
by more than 100% of the original estimate. We obtain similar results using logp1 ` Y q instead of
arcsinhpY q.

What, then, are alternative options in settings with zero-valued outcomes? Our second main
result delineates the possibilities. We show that when there are zero-valued outcomes, there is no
treatment effect parameter that satisfies all three of the following properties:

(a) The parameter is an average of individual-level treatment effects, i.e. takes the form θg “

EP rgpY p1q, Y p0qqs, where g is increasing in Y p1q.

(b) The parameter is invariant to re-scaling of the units of the outcome (i.e. gpy1, y0q “ gpay1, ay0q).

(c) The parameter is point-identified from the marginal distributions of the potential outcomes.

This “trilemma” implies that any target parameter that is well-defined with zero-valued outcomes
must necessarily jettison at least one of the three properties above. Of course, the choice of target
parameter should depend on the economic question of interest. Which of the three properties the
researcher prefers to forgo will thus generally depend on their context-specific motivation for using
a log-like transformation in the first place.

To that end, Section 4 highlights a menu of parameters that may be attractive depending on the
researcher’s core motivation. We first consider the case where the researcher is interested in obtaining
a causal parameter with an intuitive “percentage” interpretation. In this case, it may be natural to
consider a parameter outside of the class of individual-level averages of the form EP rgpY p1q, Y p0qqs.
One prominent option is θATE% “

ErY p1q´Y p0qs

ErY p0qs
, the ATE in levels as a percentage of the baseline

mean, which in many cases can be estimated via Poisson regression (Santos Silva and Tenreyro, 2006;
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Wooldridge, 2010). The researcher might also consider alternative normalizations of the outcome
that lead to intuitive units, e.g. expressing the outcome in per-capita units or converting it to a
rank with respect to some reference distribution. Next, we suppose the researcher would like to
capture concave preferences over the outcome; for example, the researcher might consider income
gains to be more meaningful for individuals who are initially poor. In this case, it is natural to
directly specify how much the researcher values a change along the extensive margin relative to the
intensive margin—e.g., that a change from 0 to 1 is worth an x percent change along the intensive
margin. Finally, suppose the researcher is interested in separately understanding the effects of the
treatment along both the intensive and extensive margins. In this case, the researcher may target
separate parameters for the two margins—e.g., ErlogpY p1qq ´ logpY p0qq | Y p1q ą 0, Y p0q ą 0s, the
average effect in logs for individuals with positive outcomes under both treatments, captures the
intensive margin. Separate effects for the two margins are not generally point-identified, but can
be can be bounded using the method in Lee (2009) or point-identified with additional assumptions
(Zhang, Rubin and Mealli, 2008, 2009).

Section 5 provides a blueprint for estimating these alternative parameters in practice by apply-
ing our recommended approaches to three recent empirical applications, including a randomized
controlled trial (RCT) (Carranza et al., 2022), a difference-in-differences (DiD) setting (Sequeira,
2016), and an instrumental variables (IV) setting (Berkouwer and Dean, 2022).

Related work. The use of log-like transformations for dealing with zero-valued outcomes has a
long history. The use of the logp1 ` Y q transformation dates to at least Williams (1937), while
Bartlett (1947) considers both the logp1 ` Y q and inverse hyperbolic sine transformations.3 More
recent papers by Burbidge, Magee and Robb (1988) and Bellemare and Wichman (2020), among
others, provide results for arcsinhpY q that are frequently cited in economics papers using this
transformation.4

Previous work has illustrated in simulations or selected empirical applications that results for
particular transformations such as logp1 ` Y q or arcsinhpY q may be sensitive to the units of the
outcome (Aihounton and Henningsen, 2021; de Brauw and Herskowitz, 2021). In concurrent work,
Mullahy and Norton (2023) show theoretically that the marginal effects from linear regressions
using logp1`Y q or arcsinhpY q are sensitive to the scaling of the outcome, with the the limits of the
marginal effects approaching those of either a levels regression or a (normalized) linear probability
model, depending on whether the units are made small or large. We complement this work by
proving that scale-dependence is a necessary feature of any identified ATE that is well-defined
with zero-valued outcomes, and that the dependence on units is arbitrarily bad for transformations
that approximate logpY q for large values of Y . Thus, it is not possible to fix the issues with
logp1 ` Y q or arcsinhpY q by choosing a “better” transformation or using a different estimator. We
also complement previous empirical examples by providing a systematic analysis of the sensitivity

3Bartlett (1947) proposes using arcsinhp
?
Y q.

4MacKinnon and Magee (1990) propose transformations of the form arcsinhpyζq{ζ, where ζ is estimated by as-
suming arcsinhpyζq{ζ is normally distributed conditional on covariates.
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to scaling for papers in the American Economic Review using arcsinhpY q.
Other work has considered the interpretation of regressions using arcsinhpY q or logp1 ` Y q

from the perspective of structural equations models, as opposed to the potential outcomes model
considered here. This literature has reached diverging conclusions: For example, Bellemare and
Wichman (2020) conclude that coefficients from arcsinhpY q regressions have an interpretation as a
semi-elasticity, while Cohn, Liu and Wardlaw (2022) conclude that these estimators are inconsistent
and advocate for Poisson regression instead. Thakral and Tô (2023) show that the semi-elasticities
implied by OLS regressions using arcsinhpY q or logp1 ` Y q are sensitive to scale; they recommend
instead the use of power functions Y k, which they show are the only transformations (besides log)
for which the implied semi-elasticities for OLS regressions are scale-invariant. In Appendix C, we
show that these diverging conclusions stem from the fact that the structural equations considered
in these papers implicitly impose different restrictions on the potential outcomes—some of which
are incompatible with zero-valued outcomes—and consider different target causal parameters. This
highlights the value of a potential outcomes framework such as ours, which makes transparent what
causal parameters are identifiable and what properties they can have.

Finally, there is a long history in econometrics of explicitly modeling the intensive and extensive
margins in settings with zero-valued outcomes, such as Tobin (1958) and Heckman (1979). Broadly
speaking, these methods impose parametric structure on the joint distribution of the potential
outcomes, which allows one to separate out the intensive and extensive margin effects of a treatment
(see Appendix C for technical details). Of course, the parametric restrictions underlying these
approaches may often be difficult to justify in practice, which perhaps has contributed to the growth
in the use of log-like transformations in place of approaches that explicitly model the extensive
margin. Our paper shows that the presence of an extensive margin should not simply be ignored
by taking a log-like transformation. It also clarifies what parameters can be learned in such cases
without imposing restrictions on the joint distribution of the potential outcomes.

1.1 Setup and notation

Let D P t0, 1u be a binary treatment and let Y P r0,8q be a weakly positively-valued outcome.5

We assume that Y “ DY p1q ` p1 ´ DqY p0q, where Y p1q and Y p0q are respectively the potential
outcomes under treatment and control. We suppose that in some (sub-)population of interest,
pY p1q, Y p0qq „ P for some (unknown) joint distribution P . We denote the marginal distribution
of Y pdq under P by PY pdq for d “ 0, 1. We assume that neither PY p0q nor PY p1q is a degenerate
distribution at zero.

5The arcsinh transformation is sometimes used in settings where Y can be negative. We impose that Y P r0,8q,
and thus do not consider this case. See Appendix B.2 for extensions of our results to settings with continuous
treatments.
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2 Sensitivity to scaling for transformations that behave like logpY q

We first consider average treatment effects of the form θ “ EP rmpY p1qq´mpY p0qqs for an increasing
function m. We note that θ corresponds to the ATE among the (sub-)population indexed by P ;
if P refers to the sub-population of compliers for an instrument, for instance, then θ is the local
average treatment effect (LATE), rather than the ATE in the full population. We are interested in
how θ changes if we change the units of Y by a factor of a. That is, how does

θpaq “ EP rmpaY p1qq ´ mpaY p0qqs

depend on a? Setting a “ 100, for example, might correspond with a change in units between
dollars and cents. Of course, if Y is strictly positive and mpyq “ logpyq, then θpaq is the ATE in
logs and does not depend on the value of a.

We consider “log-like” functions mpyq that are well-defined at zero but behave like logpyq for
large values of y, in the sense that mpyq{ logpyq Ñ 1 as y Ñ 8. This property is satisfied by
logp1` yq and arcsinhpyq, for example. Our first main result shows that if the treatment affects the
extensive margin, then |θpaq| can be made to take any desired value through the appropriate choice
of a.

Proposition 1. Suppose that:

1. (The function m is continuous and increasing) m : r0,8q Ñ R is a continuous, weakly in-
creasing function.

2. (The function m behaves like log for large values) mpyq{ logpyq Ñ 1 as y Ñ 8.

3. (Treatment affects the extensive margin) P pY p1q “ 0q ‰ P pY p0q “ 0q.

4. (Finite expectations) EPY pdq
r| logpY pdqq| | Y pdq ą 0s ă 8 for d “ 0, 1.6

Then, for every θ˚ P p0,8q, there exists an a ą 0 such that |θpaq| “ θ˚. In particular, θpaq is
continuous with θpaq Ñ 0 as a Ñ 0 and |θpaq| Ñ 8 as a Ñ 8.

Proposition 1 casts serious doubt on the interpretation of ATEs for functions like logp1 ` Y q or
arcsinhpY q as (approximate) average percentage effects. While a percent (or log point) is entirely
invariant to the units of the outcome, Proposition 1 shows that, in sharp contrast, the ATEs for
these transformations are arbitrarily dependent on units.

2.1 Intuition for Proposition 1

Loosely speaking, the result in Proposition 1 follows from the fact that a “percentage” treatment
effect is not well-defined for individuals who have Y p0q “ 0 but Y p1q ą 0.7 Any ATE that is well-

6This assumption simply ensures that EPY pdq
r|mpaY pdqq| | Y ą 0s exists for all values of a ą 0.

7See Delius and Sterck (2020) for an intuitive discussion of this difficulty in the context of the arcsinhp¨q transfor-
mation. They write, “the concept of elasticity itself does not make sense with zeros” (p. 21).
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defined with zero-valued outcomes must implicitly determine how much weight to place on changes
along the extensive margin relative to proportional changes along the intensive margin.

When mpY q behaves like logpY q for large values of Y , the importance of the extensive margin
is implicitly determined by the units of Y . For intuition, suppose that we re-scale the outcomes so
that the non-zero values of Y are very large. Then for an individual for whom treatment changes the
outcome from zero to non-zero, the treatment effect will be very large, since mpY p1qq " mpY p0qq “

mp0q. Extensive margin treatment effects thus have a large impact on the ATE when the values
of Y are made large. By contrast, changing the units of Y does not change the importance of
treatment effects along the intensive margin by much, since for Y p1q ą 0 and Y p0q ą 0, we have
that mpY p1qq ´ mpY p0qq « logpY p1q{Y p0qq, which does not depend on the units of the outcome.

To see the roles of the extensive and intensive margins more formally, for simplicity consider
the case where P pY p1q “ 0, Y p0q ą 0q “ 0, so that, for example, everyone who has positive income
without receiving a training also has positive income when receiving the training.8 Then, by the
law of iterated expectations, we can write

ErmpaY p1qq ´ mpaY p0qqs “ P pY p1q ą 0, Y p0q ą 0qEP rmpaY p1qq ´ mpaY p0qq | Y p1q ą 0, Y p0q ą 0s
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

Intensive margin

` P pY p1q ą 0, Y p0q “ 0qEP rmpaY p1qq ´ mp0q | Y p1q ą 0, Y p0q “ 0s
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

Extensive margin

.

When a is large, mpayq « logpayq for non-zero values of y, and thus the intensive margin effect in
the previous display is approximately equal to EP rlogpY p1qq ´ logpY p0qq | Y p1q ą 0, Y p0q ą 0s, the
treatment effect in logs for individuals with positive outcomes under both treatment and control.
This, of course, does not depend on the scaling of the outcome. However, the extensive margin
effect grows with a, since mpaY p1qq « logpaq ` logpY p1qq is increasing in a while mp0q does not
depend on a. Thus, as a grows large, the ATE for mpaY q places more and more weight on the
extensive margin effect of the treatment relative to the intensive margin. We can therefore make
|θpaq| arbitrarily large by sending a Ñ 8. By contrast, if a « 0, then mpaY pdqq « 0 with very high
probability, and thus the ATE for mpaY q is approximately equal to 0.

It is worth emphasizing that the arbitrary scale-dependence described in Proposition 1 exists
whenever the treatment affects the probability that the outcome is zero, regardless of whether the
extensive margin is of direct economic interest or not.9 In some settings, the presence of zeros
may correspond to a discrete economic choice (e.g. not participating in the labor market), and
thus may be of direct interest. In other settings—for example, if the outcome is a yearly count
of publications which is sometimes zero for idiosyncratic reasons—the extensive margin may be a
“nuisance” rather than a direct economic object of interest.10 The result in Proposition 1 highlights

8A similar argument goes through without this restriction, but then there are two extensive margins, one for
individuals with Y p1q ą 0 “ Y p0q, and the other for those with Y p0q ą Y p1q “ 0.

9Without an extensive margin, ATEs for transformations mp¨q defined at zero still exhibit scale-dependence,
though perhaps not arbitrarily so. See Section 3.1 below for further discussion.

10One setting where nuisance zeros may arise is when the observed outcome Y is actually a mis-measured version
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that regardless of the source of the zeros, an ATE for a log-like transformation is not interpretable
as a percentage, since the presence of the extensive margin effect makes it arbitrarily dependent
on the units. Indeed, a percentage effect is not a well-defined for individuals moving from zero
to non-zero outcomes. Whether the zeros correspond to a discrete economic choice or not will be
relevant, however, when considering the choice of alternative target parameter, a topic we return to
in Section 4 below.

2.1.1 Intuition for the special case of logp1 ` Y q

We can also develop some intuition for Proposition 1 by considering the special case where mpyq “

logp1 ` yq. In that case, we have that

θpaq “ Erlogp1 ` aY p1qq ´ logp1 ` aY p0qqs “ E

„

log

ˆ

1 ` aY p1q

1 ` aY p0q

˙ȷ

. (1)

Note that

lim
aÑ8

log

ˆ

1 ` aY p1q

1 ` aY p0q

˙

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

log
´

Y p1q

Y p0q

¯

if Y p1q ą 0, Y p0q ą 0

0 if Y p1q “ 0, Y p0q “ 0

8 if Y p1q ą 0, Y p0q “ 0

´8 if Y p1q “ 0, Y p0q ą 0.

We thus see that the term inside the expectation in (1) diverges to 8 for individuals with Y p1q ą

0, Y p0q “ 0, and likewise diverges to ´8 when Y p1q “ 0, Y p0q ą 0. If on average the extensive
margin effect is positive, then there are more individuals for whom the limit is `8 rather than
´8, and thus (under appropriate regularity conditions) the ATE diverges to 8. Analogously, if the
extensive margin effect is negative, then the ATE diverges to ´8. Hence, we see that the magnitude
of the ATE for logp1 ` aY q diverges as a Ñ 8 when the average effect on the extensive margin is
non-zero. By contrast, as a Ñ 0, logp1 ` aY pdqq Ñ logp1q “ 0 for both d “ 0 and d “ 1, and thus
the treatment effect converges to 0. Proposition 1 shows that this dependence on units occurs for
any log-like transformation, not just logp1 ` Y q, and thus this issue cannot be fixed by choosing a
different log-like transformation (logpc ` Y q, arcsinhpY q, arcsinhp

?
Y q, etc.)

2.2 Additional remarks and extensions

Remark 1 (ATEs for logpc ` Y q). In some settings, researchers consider the ATE for logpc ` Y q

and investigate sensitivity to the parameter c. Observe that logp1 ` aY q “ logpap1{a ` Y qq “

logpaq ` logp1{a ` Y q, and thus the ATE for logp1 ` aY q is equal to the ATE for logp1{a ` Y q.
Hence, varying the constant term for logpc ` Y q is equivalent to varying the scaling of the outcome

of the true economic object of interest. For example, publications Y may be a noisy measure of true researcher
productivity Y ˚

ą 0. One possible remedy in this setting is to model the measurement error to recover the treatment
effect on Y ˚ rather than on Y . In a similar vein, Gandhi, Lu and Shi (2023) models the measurement error in product
shares in demand estimation, which are sometimes zero in finite samples.
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when using mpyq “ logp1 ` yq. Proposition 1 thus implies that if treatment affects the extensive
margin, one can obtain any desired magnitude for the ATE for logpc ` Y q via the choice of c. In
particular, the ATE for logpc ` Y q grows large in magnitude as c Ñ 0, and small as c Ñ 8.

Remark 2 (Finite changes in scaling). Proposition 1 shows that any magnitude of |θpaq| can be
achieved via the appropriate choice of a. How much does θpaq change for finite changes in the scaling
a? Proposition 4 in the appendix shows that the change in the ATE from multiplying the outcome
by a large factor a is approximately logpaq times the treatment effect on the extensive margin,11

EP rmpaY p1qq ´ mpaY p0qqs “ pP pY p1q ą 0q ´ P pY p0q ą 0qq ¨ logpaq ` oplogpaqq. (2)

Thus, the ATE for mpY q will tend to be more sensitive to finite changes in scale the larger is the
extensive margin treatment effect. This implies that sensitivity analyses that assess how treatment
effect estimates for mpY q change under finite changes in the units of Y —or equivalently, under finite
changes of c in logpc ` Y q—are roughly equivalent to measuring the size of the extensive margin.

Remark 3 (Extension to continuous treatments). We focus on ATEs for binary treatments for expo-
sitional simplicity, although similar results apply with continuous treatments. In Appendix B.2, we
show that when d is a continuous treatment, any treatment effect contrast that averages mpaY pdqq

across possible values of d (i.e. a parameter of the form
ş

ωpdqErmpaY pdqs) is arbitrarily sensitive
to scaling when there is an extensive margin effect.

Remark 4 (Extension to OLS estimands). It is worth noting that the results in this section show
that population ATEs for mpY q are sensitive to the units of Y . These results are about estimands,
and thus any consistent estimator of the ATE for mpY q will be sensitive to scaling (at least asymp-
totically). Thus, our results apply to ordinary least squares (OLS) estimators when they have
a causal interpretation, but also to non-linear estimators such as inverse-probability weighting or
doubly-robust methods. Nevertheless, given the prominence of OLS in applied work, and the fact
that OLS is sometimes used for non-causal estimands, in Appendix B.3 we provide a result specif-
ically on the scale-sensitivity of the population regression coefficient for a random variable of the
form mpY q on an arbitrary random variable X. Our result shows that the coefficients on X will
be arbitrarily sensitive to the scaling of Y when the coefficients of a regression of 1rY ą 0s on X

are non-zero. Thus, the OLS estimand using a logarithm-like function on the left-hand side will be
sensitive to scaling even when it does not have a causal interpretation.

Remark 5 (Statistical significance). Equation (2) shows that P pY p1q ą 0q ´ P pY p0q ą 0q is the
dominant term in θpaq for large a, which suggests that the t-statistic for an estimator of θpaq will
generally converge to that for the analogous estimator of the extensive margin effect, P pY p1q ą

0q ´ P pY p0q ą 0q. Proposition 7 in the appendix formalizes this intuition when the treatment
effects are estimated via OLS: As a is made large, the t-statistic for θ̂paq converges to that for the
extensive margin estimate. In our empirical analysis of papers in the American Economic Review
below, we find that indeed the t-statistics for estimates of the ATE using arcsinhpY q are typically

11We say fpaq “ opgpaqq if limaÑ8 |fpaq{gpaq| “ 0. That is, as a Ñ 8, |fpaq| grows strictly slower than |gpaq|.
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close to those for the extensive margin effect.

Remark 6 (When most values are large). Researchers often have the intuition that if most of the
values of the outcome are large, then ATEs for transformations like logp1 ` Y q or arcsinhpY q will
approximate elasticities, since mpY q « logpY q for most values of Y . Indeed, in an influential paper,
Bellemare and Wichman (2020) recommend that researchers using the arcsinhpY q transformation
should transform the units of their outcome so that most of the non-zero values of Y are large.
The results in this section suggest—perhaps somewhat counterintuitively—that if one rescales the
outcome such that the non-zero values are all large, the behavior of the ATE will be driven nearly
entirely by the effect of the treatment on the extensive margin and not by the distribution of the
potential outcomes conditional on being positive. Moreover, the rescaling can be chosen to generate
any magnitude for the ATE if the treatment affects the extensive margin.

Remark 7 (Zero extensive margin). Proposition 1 applies to settings where treatment has a non-
zero effect on average on the extensive margin. This raises the question of whether the use of
log-like transformations is justified in the absence of an extensive margin treatment effect. Our
Proposition 3 below implies that the ATE for any log-like transformation will be sensitive to the
units of the outcome for at least some distribution with strictly positive outcomes, but perhaps not
arbitrarily so in the sense of Proposition 1 (see Section 3.1 for further discussion). Moreover, if
one were confident that the extensive margin effect were exactly zero for all individuals, one could
recover the ATE in logs for individuals with positive outcomes by simply dropping individuals with
Y “ 0. The use of log-like transformations is thus somewhat difficult to justify even in settings
without an extensive margin.

2.3 Empirical illustrations from the American Economic Review

We illustrate the results in this section by evaluating the sensitivity to scaling of estimates using the
arcsinhpY q transformation in recent papers in the American Economic Review (AER). In Novem-
ber 2022, we used Google Scholar to search for “inverse hyperbolic sine” among papers published
in the AER since 2018. We searched for papers using arcsinhpY q rather than logp1 ` Y q since
the former are easier to find with a simple keyword search. Our search returned 17 papers that
estimate treatment effects for an arcsinh-transformed outcome.12 Of these, 10 explicitly interpret
the results as percentage changes or elasticities, and 6 of the remaining 7 do not directly interpret
the units. See Appendix Table 1 for a list of the papers and relevant quotes. Of the 17 total papers
using arcsinhpY q, 10 had publicly available replication data that allowed us to replicate the original
estimates and assess their sensitivity to scaling.13 For our replications, we focus on the first specifi-
cation using arcsinhpY q presented in a table in the paper, which we view as a reasonable proxy for

12We consider papers with both binary and non-binary treatments, as our theoretical results extend easily to
non-binary treatments; see Remark 3. Seven of the 10 papers we replicated used a binary treatment.

13We include one paper where there was a slight discrepancy between our replication of the original result and the
result reported in the paper that only affected the third decimal place.
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the paper’s main specification using arcsinhpY q.14

We assess the sensitivity of these results by re-running exactly the same procedure as in the
original paper, except replacing arcsinhpY q with arcsinhp100 ¨Y q. Thus, for example, if the original
paper estimated a treatment effect for the arcsinh of an outcome measured in dollars, we use the
same procedure to re-estimate the treatment effect for the arcsinh of the outcome measured in cents.
Since (2) shows that the sensitivity to scaling depends on the size of the extensive margin effect, we
also estimate the extensive margin effect by using the same procedure as in the original paper but
with the outcome 1rY ą 0s.

Treatment Effect Using: Change from
rescaling units:

Paper arcsinhpY q arcsinhp100 ¨ Y q Ext. Margin Raw %

Azoulay et al (2019) 0.003 0.017 0.003 0.014 464
Fetzer et al (2021) -0.177 -0.451 -0.059 -0.273 154
Johnson (2020) -0.179 -0.448 -0.057 -0.269 150
Carranza et al (2022) 0.201 0.453 0.055 0.252 125
Cao and Chen (2022) 0.038 0.082 0.010 0.044 117
Rogall (2021) 1.248 2.150 0.195 0.902 72
Moretti (2021) 0.054 0.068 0.000 0.013 24
Berkouwer and Dean (2022) -0.498 -0.478 0.010 0.020 -4
Arora et al (2021) 0.113 0.110 -0.001 -0.003 -3
Hjort and Poulsen (2019) 0.354 0.354 0.000 0.000 0

Table 1: Change in estimated treatment effects from re-scaling the outcome by a factor of 100 in
papers published in the AER using arcsinhpY q

Note: This table replicates treatment effect estimates using arcsinhpY q as the outcome in recent papers published
in the AER, and explores their sensitivity to the units of Y . The first column shows the author(s) and date of the
paper. The second column shows the treatment effect on arcsinhpY q using the units originally reported in the paper.
The third column shows a treatment effect estimate constructed identically to the estimate in column 2 except using
arcsinhp100 ¨ Y q as the outcome instead of arcsinhpY q, e.g. converting Y from dollars to cents before taking the
arcsinh transformation. The fourth column shows an estimate of the size of the extensive margin, obtained using
1rY ą 0s as the outcome. The final two columns show the raw difference and percentage difference between the
second and third columns. The table is sorted on the magnitude of the percentage difference.

The results of this exercise, shown in Table 1, illustrate that treatment effect estimates can be
quite sensitive to the scaling of the outcome when the extensive margin is not approximately zero.
Indeed, in 5 of the 10 replicable papers, multiplying the outcome by a factor of 100 changes the
estimated treatment effect by more than 100% of the original estimate. The change in the estimated
treatment effect is less than 10% only in three papers, all of which have either zero or near-zero (ă1
p.p.) effects on the extensive margin. Figure 1 shows that the (absolute) change in the estimated
treatment effect is larger when the extensive margin effect is larger, with the change lining up very

14We use the first coefficient presented in a figure for one paper without any tables in the main text using arcsinhpY q.
If the first specification is a validation check (e.g. a pre-trends test), we use the first specification of causal interest.
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Figure 1: Change from multiplying outcome by 100 versus extensive margin effect
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Note: This figure shows the relationship between the sensitivity of treatment effects using arcsinhpY q to re-scaling
the units of Y and and the size of the extensive margin. For each replicated paper, this figure plots the absolute
value of the change in the estimated treatment effect from multiplying the outcome by 100 (i.e. the absolute value of
the Raw Change column in Table 1) on the y-axis against logp100q times the absolute value of the extensive margin
effect on the x-axis. If the approximation in (2) were exact, all points would lie on the 45 degree line.

closely with the approximation given in (2).15

Using the same 10 papers, we also estimate treatment effects using logp1 ` Y q as the outcome,
and analogously explore how the results change when we multiply the units of Y by 100. (Four of
the 10 papers that we replicate report an alternative specification using logp1 ` Y q in the paper.)
The results, shown in Appendix Table 2, are qualitatively quite similar those in Table 1, with five
of the 10 treatment effect estimates again changing by more than 100%. These results underscore
the fact that Proposition 1 applies to all log-like transformations, including both arcsinhpY q and
logpc ` Y q for any constant c.

3 Sensitivity to scaling for other ATEs

Our results so far show that ATEs for transformations that are defined at zero and approximate
logpyq are arbitrarily sensitive to scaling. What other options are available when there are zero-
valued outcomes? To help delineate alternative options, in this section we provide a result showing
what properties a parameter defined with zero-valued outcomes can have. Specifically, we establish
a “trilemma”: When there are zero-valued outcomes, there is no parameter that is (a) an average of

15In Appendix Figure 1, we plot the t-statistics for the treatment effects estimates as well as those for the extensive
margin effect. In line with the discussion in Remark 5, we find that the t-statistics for the treatment effect using
arcsinhpY q tend to be similar to those for the extensive margin, except when the extensive margin is very small, and
become even closer when multiplying the units by 100.
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individual-level treatment effects of the form θg “ EP rgpY p1q, Y p0qqs, (b) scale-invariant, and (c)
point-identified.16 Any approach for settings with zero-valued outcomes must therefore abandon
one of the properties (a)–(c); in Section 4 below we discuss several approaches that relax one (or
more) of these requirements.

Before stating our formal result, we must make precise what we mean by scale-invariance and
point-identification. We say that g is scale-invariant if its value is the same under any re-scaling of
the units of y by a positive constant a.

Definition 1. We say that the function g is scale-invariant if it is homogeneous of degree zero, i.e.
gpy1, y0q “ gpay1, ay0q for all a, y1, y0 ą 0.

We next describe point-identification. We consider parameters that are identified without placing
restrictions on treatment effect heterogeneity. As in Fan, Guerre and Zhu (2017), this is formalized
by considering parameters that can be learned if we know the marginal distributions of Y p1q and
Y p0q, but not the full joint distribution of pY p1q, Y p0qq.

To connect treatment effect heterogeneity to the joint distribution of potential outcomes, con-
sider the simple case of a randomized experiment. By examining the outcome distribution for the
treated group, we can learn the marginal distribution of Y p1q. Likewise, by examining the outcome
distribution for the control group, we can learn the marginal distribution of Y p0q. If treatment
effects were assumed to be constant, then for each observed treated unit with outcome Y p1q, we
could infer their untreated outcome as Y p0q “ Y p1q ´ τ , where τ is the average treatment effect.
Hence, the joint distribution of pY p1q, Y p0qq would be identified. However, if we allow for treatment
effect heterogeneity, then for an observed treated unit with outcome Y p1q, we do not know what
their value of Y p0q would be, and thus we do not know the joint distribution of pY p1q, Y p0qq. This
winds up being especially important in settings with an extensive margin, since when we observe the
distribution of outcomes for treated units, it means that we do not know which of the treated units
would have had a zero outcome under the control condition, and thus it is difficult to disentangle
the intensive and extensive margins.17

With that intuition in mind, we now give a formal definition. Recall that P denotes the joint
distribution of pY p1q, Y p0qq, while PY pdq denotes the marginal distribution of Y pdq. We then say θg

is point-identified if it depends on P only through the marginals PY p1q, PY p0q.

Definition 2 (Identification). We say that θg is point-identified from the marginals at P if for every
joint distribution Q with the same marginals as P (i.e. such that QY pdq “ PY pdq for d “ 0, 1),
EP rgpY p1q, Y p0qqs “ EQrgpY p1q, Y p0qqs. For a class of distributions P, we say that θg is point-
identified over P if for every P P P, θg is point-identified from the marginals at P .

16Of course, not all parameters of the form EP rgpY p1q, Y p0qqs can be interpreted as an average of individual
treatment effects. For example Er1rY p1q ą 0, Y p0q ą 0ss is the fraction of individuals whose outcomes is positive
under both treatments, rather than a treatment effect. Our results apply to all parameters of this form, regardless
of whether they are average treatment effects per se.

17In Appendix C, we discuss a variety of structural approaches that impose assumptions restricting the joint
distribution, thus allowing us to separately point-identify the effects for the two margins.
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We will denote by P` the set of distributions on r0,8q2. Thus, θg is point-identified over P` if it is
always identified when Y takes on zero or weakly positive values. Our next result formalizes that it
is not possible to have a parameter of the form EP rgpY p1q, Y p0qqs that is both scale-invariant and
point-identified over P`.

Proposition 2 (A trilemma). The following three properties cannot hold simultaneously:

(a) θg “ EP rgpY p1q, Y p0qqs for a non-constant function g : r0,8q2 Ñ R that is weakly increasing
in its first argument.

(b) The function g is scale-invariant.

(c) θg is point-identified over P`.18

Any parameter defined with zero-valued outcomes must therefore abandon one of properties (a)–(c).
As a special case, Proposition 2 implies that the ATE for any increasing function mpY q defined

at zero cannot be scale-invariant. This is because the ATE for mpY q takes the form in (a) with
gpy1, y0q “ mpy1q ´ mpy0q, and is also point-identified (part (c)). It follows that property (b)
must be violated, i.e. there is some c, y0, y1 ą 0 such that mpcy1q ´ mpcy0q ‰ mpy1q ´ mpy0q.
Proposition 2 thus formalizes the sense in which it is not possible to “fix” the issues with ATEs for
log-like transformations described above by taking alternative transformations of the outcome (e.g.
?
Y ).

3.1 Implications for settings without an extensive margin

The trilemma in Proposition 2 applies for transformations of the outcome defined at zero. To
prove Proposition 2, however, we establish an even stronger result: the only parameter satisfying
properties (a) and (b) that is point-identified over distributions for which Y is strictly positively-
valued is the ATE in logs.19 This result, which is formalized in Proposition 3 in the Appendix, has
some useful implications for settings in which the outcome is strictly positive.

First, it implies that the ATE for any transformation of the outcome other than logpY q will
depend on the units of the outcome for at least some DGP where the outcome is strictly positive.
The scale-dependence of log-like transformations such as logp1 ` Y q or arcsinhpY q is thus not
entirely limited to settings with an extensive margin.20 We note, however, that while the ATE for
such transformations may depend on the units of the outcome even without zero-valued outcomes,
the dependence need not be arbitrarily bad in the sense of Proposition 1. Indeed, (2) shows that if
there is no extensive margin, the ATE for a log-like transformation will be approximately insensitive

18A minor technical complication arises from the fact that EP rgpY p1q, Y p0qs could be infinite for some P . For the
purposes of our result, it suffices to trivially define θg to be identified in this case. Alternatively, the same result
holds if part (c) is modified to impose only that θg is point-identified over all distributions in P` with finite support,
thus avoiding issues related to undefined expectations.

19More precisely, the only such treatment effect is the ATE in logs or an affine tranformations thereof.
20There is thus no conflict between our results and those in Thakral and Tô (2023), who note that semi-elasticities

for OLS regressions using log-like transformations may depend on the units of the outcome even when Y is strictly
positively-valued.
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to scaling once the values of Y are made large. This is intuitive, since if Y is strictly positively-
valued, the ATE for a log-like transformation will be approximately equal to the ATE in logs when
the values of Y are made large.

Second, Proposition 3 implies that even when Y p1q and Y p0q are strictly-positively valued, the
average proportional effect θAvg% “ ErpY p1q´Y p0qq{Y p0qs is not point-identified. This parameter is
empirically relevant: For instance, Andrews and Miller (2013) show that in the Baily (1978)–Chetty
(2006) model with heterogeneous consumption responses to unemployment, the optimal level of
unemployment insurance depends on a parameter of the form θAvg%, where Y is consumption and
D is unemployment. Although the ATE in logs may approximate θAvg% when the proportional effect
of the treatment is approximately constant, our results imply that it is not possible to point-identify
θAvg% when allowing for arbitrarily heterogeneous proportional effects.

4 Empirical approaches with zero-valued outcomes

Our theoretical results above imply that when there are zero-valued outcomes, the researcher should
not take a log-like transformation of the outcome and interpret the resulting ATE as an average
percentage effect: Unlike a percentage, such an ATE depends on the units of the outcome. In this
section, we highlight some other parameters that are well-defined and easily interpreted when there
are zero-valued outcomes; in Section 5 below, we show how these parameters can be estimated in
three empirical applications. Of course, any alternative parameter must necessarily drop one of the
requirements in the trilemma in Proposition 2, but the choice of which to drop may depend on the
researcher’s motivation.

To inform our discussion of alternative parameters, it is therefore useful to first enumerate several
reasons why empirical researchers may target treatment effects for a log-transformed outcome rather
than the ATE in levels:

(i) The researcher is interested in reporting a treatment effect parameter with easily-interpretable
units, such as “percentage changes.”

(ii) The researcher believes that there are decreasing returns to the outcome, and thus wants
to place more weight on treatment effects for individuals with low initial outcomes. For instance,
the researcher may perceive it to be more meaningful to raise income from Y p0q “ $10,000 to
Y p1q “ $20,000 than from Y p0q “ $100,000 to Y p1q “ $110,000, yet both of these treatment effects
contribute equally to the ATE in levels.

(iii) The researcher is interested in both the intensive and extensive margin effects of the treat-
ment, and is using the ATE for a log-like transformation as an approximation to the proportional
effect along the intensive margin.

These three motivations suggest different ways of breaking out of the trilemma in Proposi-
tion 2. If the goal is to achieve a percentage interpretation, then one can consider scale-invariant
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parameters outside of the class EP rgpY p1q, Y p0qqs. For instance, researchers can consider the ATE
in levels expressed as a percentage of the control mean, or the ATE for a normalized parameter
Ỹ that already has a percentage interpretation. Alternatively, if the goal is to capture concave
social preferences over the outcome, then it is natural to specify how much we value the inten-
sive margin relative to the extensive margin—thus abandoning scale-invariance. Finally, if the
goal is to separately understand the intensive margin effect, the researcher can abandon point-
identification (from the marginal distributions) and directly target the partially identified param-
eter E rlogpY p1qq ´ logpY p0qq | Y p0q ą 0, Y p1q ą 0s, the effect in logs for individuals with positive
outcomes under both treatments. We address each of these cases in turn below, with a summary of
some possible parameters in Table 2.

Description Parameter Main property
sacrificed? Pros/Cons

Normalized ATE ErY p1q ´ Y p0qs{ErY p0qs ErgpY p1q, Y p0qqs Pro: Percent interpretation
Con: Does not capture decreasing returns

Normalized outcome ErY p1q{X ´ Y p0q{Xs ErgpY p1q, Y p0qqs Pro: Per-unit-X interpretation
Con: Need to find sensible X

Explicit tradeoff of
intensive/extensive
margins

ATE for mpyq “

#

logpyq y ą 0

´x y “ 0
Scale-invariance Pro: Explicit tradeoff of two margins

Con: Need to choose x; Monotone only if
support excludes p0, e´x

q

Intensive margin effect E
”

log
´

Y p1q

Y p0q

¯

| Y p1q ą 0, Y p0q ą 0
ı

Point-
identification

Pro: ATE in logs for the intensive margin
Con: Partial identification

Table 2: Summary of alternative target parameters

Remark 8 (Statistical reasons for transforming the outcome). We focus on settings where the
researcher is interested in a parameter other than the ATE in levels. In some settings, the researcher
may be interested in the ATE in levels, but simple regression estimators may be noisy owing to a
long right-tail of the outcome (Athey et al., 2021). The researcher might then try to estimate the
ATE in levels by first estimating the ATE for a log-like transformation, and then multiplying by the
baseline mean. However, since the ATE for a log-like transformation depends on the units of the
outcome—and is thus not a true “percentage” effect—the validity of this approach for recovering
the ATE in levels will depend on the initial units of Y .21 We refer the reader to Athey et al. (2021)
and Müller (2023) for alternative approaches to estimation and inference targeted to settings where
the ATE in levels is of interest but the outcome has heavy tails.

Remark 9 (Transformation-specific identification). Another reason that researchers may consider
taking a transformation of the outcome is that a parametric assumption used for identification
may be more plausible for some functional forms than others. For example, when the outcome

21Even in the case where Y is strictly positive and one first estimates the ATE in logs, this approach will only
recover the ATE in levels under certain homogeneity assumptions, e.g. constant proportional effects. See Wooldridge
(1992) for related discussion.
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is strictly positive, parallel trends in logs may be more plausible than parallel trends in levels if
time-varying factors are thought to have a multiplicative impact on the outcome. We note that
justifying parallel trends for a log-like transformation is especially tricky, however, since if parallel
trends holds for the arcsinh of an outcome measured in dollars, say, it will not generally hold for the
arcsinh of the outcome measured in cents (Roth and Sant’Anna, 2023). Thus, the parallel trends
assumption is specific to both the transformation mp¨q and the units of the outcome. Moreover,
even if the researcher is confident in parallel trends for a particular log-like transformation and unit
of the outcome, our results imply that they should not interpret the resulting ATT as an average
percentage effect, since that ATT is dependent on the units in which the outcome is measured
(Proposition 1).

In what follows, we consider alternative parameters that may be of interest when the marginal
distributions of the potential outcomes are identified for some population of interest. Such iden-
tification is obtained in RCTs or under conditional unconfoundedness (for the full population), as
well in instrumental variables settings (for the population of compliers), as these designs do not rely
on functional form assumptions for identification. If the original identification strategy relies on a
functional form assumption (e.g. parallel trends), then obtaining identification of the alternative
parameters discussed below may require different identifying assumptions. We discuss these issues
in detail in Section 5.2, where we revisit the difference-in-differences application in Sequeira (2016).

4.1 When the goal is interpretable units

We first consider the case where the researcher’s primary goal is to obtain a treatment effect pa-
rameter with easily interpretable units, such as percentages.

Normalizing the ATE in levels. One possibility is to target the parameter

θATE% “
ErY p1q ´ Y p0qs

ErY p0qs
,

which is the ATE in levels expressed as a percentage of the control mean. For example, if a researcher
is studying a program D meant to reduce healthcare spending Y , then θATE% is the percentage
reduction in costs from implementing the program. This parameter is point-identified and scale-
invariant, and thus has an intuitive percentage interpretation. Importantly, however, θATE% is the
percentage change in the average outcome between treatment and control, but is not an average of
individual-level percentage changes.22 That is, θATE% does not take the form EP rgpY p1q, Y p0qqs,
thus avoiding the trilemma in Proposition 2.

We note that θATE% is consistently estimable by Poisson regression (see Gourieroux, Monfort
and Trognon (1984); Santos Silva and Tenreyro (2006); Wooldridge (2010, Chapter 18.2)) under
an appropriate identifying assumption. With a randomly assigned D, for example, estimation

22This is roughly analogous to how quantile treatment effects show changes in the quantiles of the potential outcomes
distributions, but not the quantiles of the treatment effects (without further assumptions).
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of Y “ exppα ` βDqU by Poisson quasi-maximum likelihood (QMLE) consistently estimates the
population coefficient β, which satisfies eβ ´1 “ ErY p1qs{ErY p0qs´1 “ θATE%. In Section 5 below,
we illustrate how θATE% can be estimated by Poisson regression in practice in several empirical
examples, including both an RCT and DiD setting.

We also emphasize that θATE% is influenced by treatment effects along both the intensive and
extensive margins. In particular, the numerator of θATE% is the ATE in levels. Thus, if an individual
has a treatment effect of say 1, that contributes the same to θATE% regardless of whether their
outcome changes from 0 to 1 (an extensive margin change) or 1 to 2 (an intensive margin change).
The parameter θATE% may therefore be attractive in settings where the researcher does not want to
distinguish between the intensive and extensive margins. For example, if Y is a count of publications
by a researcher in a particular year, and publications are sometimes zero owing to the idiosyncracies
of the publication process, then it may be reasonable to view a change between 0 and 1 as similar
to a change between 1 and 2. On the other hand, in settings where a zero corresponds to a distinct
economic choice, such as not participating in the labor market, then it may be of interest to separate
the effects along the intensive and extensive margin, as we discuss in more detail in Section 4.3 below.

It is also worth noting that if the researcher has determined that the ATE in levels is not of
economic interest, then similar issues will likely arise for θATE%, since θATE% is just a re-scaling of
the ATE in levels. For one, the ATE in levels (and hence θATE%) imposes no diminishing returns,
and thus might be dominated by individuals in the tail of the outcome distribution, particularly
when the outcome is skewed. Whether this is warranted will depend on the economic question: if
the policy-maker’s goal is to reduce healthcare spending, it may not matter whether the savings
are produced mainly by reducing spending for a small fraction of individuals with catastrophic
medical spending. On the other hand, a policy that increases every American’s income by $100 and
one that increases Elon Musk’s income by $35 billion and has no effect on anyone else would have
approximately the same value of θATE%, yet the former may be vastly preferred by an inequality-
minded policy-maker. We therefore next turn to alternative approaches that place less weight on
the tails of the outcome distribution.

Normalizing other functionals. While θATE% normalizes the ATE by the control mean, one can
obtain scale-invariance by normalizing other functionals of the potential outcomes distributions.23

For example,

θMedian% “
MedianpY p1qq ´ MedianpY p0qq

MedianpY p0qq
,

is the quantile treatment effect at the median normalized by the median of Y p0q.24 Put otherwise,
it captures the percentage change in the median between the treated and control distributions.
(θMedian% thus may be particularly relevant for politicians interested in maximizing the happiness
of the median voter!) As is typically the case with quantile treatment effects, however, the numerator

23Indeed, any functional ϕpP q is homogeneous of degree zero if and only if it can be written as the ratio of two
homogeneous of degree one functionals.

24Note that θMedian% is well-defined only if MedianpY p0qq ą 0.
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of θMedian% need not correspond to the median of individual-level treatment effects. Moreover, in
many settings, decision-makers may care about treatment effects throughout the distribution, not
just at the median, in which case θMedian% may not be the most economically-relevant parameter.

Normalizing the outcome. A related approach to obtaining a treatment effect with more intu-
itive units is to estimate the ATE for a transformed outcome that has a percentage interpretation.
One example is to consider an outcome of the form Ỹ “ Y {X, where Y is the original outcome and
X is some pre-determined characteristic. For example, suppose Y is employment in a particular
area. The treatment effect in levels for Y may be difficult to interpret, since a change in employment
of 1,000 means something very different in New York City versus a small rural town. However, if X
is the area’s population, then Ỹ is the employment-to-population ratio, which may be more compa-
rable across places, and is already in percentage (i.e. per capita) units. We note that the ATE for
Ỹ is a scale-invariant, point-identified parameter of the form θ “ EP rgpY p1q, Y p0q, Xqs, and thus
escapes the trilemma in Proposition 2 by avoiding property (a).25 The viability of this approach, of
course, depends on having a variable X such that the normalized outcome Ỹ is of economic inter-
est. We suspect that in many contexts, reasonable options will be available, including pre-treatment
observations of the outcome (assuming these are positive), or the predicted control outcome given
some observable characteristics (i.e., X “ ErY p0q | W s, for observable characteristics W ).

A second example is to use Ỹ “ FY ˚pY q, where FY ˚ is the cumulative distribution function
(CDF) of some reference random variable Y ˚, as suggested in Delius and Sterck (2020). The
transformed outcome Ỹ then corresponds to the rank (i.e. percentile) of an individual in the
reference distribution, and the ATE for Ỹ can be interpreted as the average change in rank caused
by the treatment. The ATE for Ỹ is unit-invariant so long as Y and Y ˚ and measured in the same
units. Outcomes of this form have become increasingly popular in the literature on intergenerational
mobility, where Ỹ corresponds to a child’s rank in the national income distribution. This approach
has been found to yield more stable estimates than approaches using logpc`Y q, which Chetty et al.
(2014) show are sensitive to the choice of c.26

Finally, the researcher might report treatment effects on transformed outcomes of the form
1rY ě ys for different values of y. For example, the researcher might report the impact of the
treatment on the probability that an individual earns at least $50,000, $60,000, etc., and interpret
it as the treatment effect on the probability of obtaining a “well-paying job.”27 Such treatment
effects have interpretable units as percentage points (i.e. changes in probabilities). We note that
treatment effects for outcomes of this form combine the effect of the treatment along the intensive
and extensive margin, since for example, a worker who has Y p1q ą $50, 000 ą Y p0q could either not
work under control (Y p0q “ 0) or work under control but have earnings below $50,000.

25It is scale-invariant in the sense that gpy1, y0, xq “ gpay1, ay0, axq.
26Similar to the discussion in Footnote 21, the treatment effect in ranks cannot be converted back to obtain the

ATE in levels without additional assumptions.
27The researcher could also report the implied CDF of Y p1q and Y p0q, from which one can infer the treatment

effect on outcomes of this form for all y.
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4.2 When the goal is to capture decreasing returns

We next consider the case where the researcher wants to capture some form of decreasing marginal
utility over the outcome. For example, when Y is strictly positively valued, the ATE in logs corre-
sponds to the change in utility from implementing the treatment for a utilitarian social planner with
log utility over the outcome, U “ ErlogpY qs. Intuitively, this social welfare function captures the
fact that the planner values a percentage point of change in the outcome equally for all individuals,
regardless of their initial level of the outcome.

Of course, log utility is not well-defined when there is an extensive margin: A coherent utility
function defined with zero-valued outcomes must take a stand on the relative importance of the
intensive versus extensive margins. Recall from Section 2.1 that when using transformations like
logp1 ` yq or arcsinhpyq, the scaling of the outcome implicitly determines the weights placed on
these margins.

Instead of implicitly weighting the margins via the scaling of Y , a more transparent approach
is to explicitly take a stand on how much one values the two margins of treatment. Of course, if
one knows that their utility is captured by U “ ErmpY qs (for a particular unit of Y , say earnings
in dollars), then the ATE for mpY q is appropriate. If one is unsure exactly of their utility function,
then a rough calibration is to specify how much one values a change in earnings from 0 to 1
relative to a percentage change in earnings for those with non-zero earnings. If, for example, one
values the extensive margin effect of moving from 0 to 1 the same as a 100x percent increase in
earnings, then one might consider setting mpyq “ logpyq for y ą 0 and mp0q “ ´x. The ATE for
this transformation can be interpreted as an approximate percentage (log point) effect, where an
increase from 0 to 1 is valued at 100x log points.28

We emphasize that for a fixed value of x, this approach necessarily depends on the scaling of the
outcome (thus avoiding the trilemma in Proposition 2). However, this may not be so concerning since
the appropriate choice of x also depends on the units of the outcome—e.g., saying a change from 0
to 1 is worth 100x percent means something very different if 1 corresponds with one dollar versus
a million dollars. In other words, ATEs for transformations such as arcsinhpY q may be difficult to
interpret because the scaling of the outcome implicitly determines the relative importance of the
intensive and extensive margins; this approach avoids that difficulty by explicitly taking a stand
on the tradeoff between these two margins. Nevertheless, a challenge with this approach is that
researchers may have differing opinions over the appropriate choice of x (or more generally, over the
appropriate utility function).

28Note that this transformation will generally only be sensible if the support of Y excludes p0, e´x
q, since otherwise

the function mpyq is not monotone in y over the support of Y . It is common, however, to have a lower-bound on
non-zero values of the outcome; e.g., a firm cannot have between 0 and 1 employees. In our application to Sequeira
(2016) below, we normalize the minimum non-zero value of Y to 1 when applying this approach.
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4.3 When the goal is to understand intensive and extensive margins

Finally, we consider the case where the researcher is interested in understanding the intensive and
extensive margin effects separately. A common question in the literature on job training programs
(Card, Kluve and Weber, 2010), for instance, is whether a program raises participants’ earnings
by helping them find a job—which would be expected only to have an extensive-margin effect—or
by increasing human capital, which would be expected to also affect the intensive margin. In such
settings, it is natural to target separate parameters for the intensive and extensive margins.

For example, the parameter

θIntensive “ ErlogpY p1qq ´ logpY p0qq | Y p1q ą 0, Y p0q ą 0s

captures the ATE in logs for those who would have a positive outcome regardless of their treatment
status. The parameter θIntensive is scale-invariant but is not point-identified from the marginal
distributions of the potential outcomes (thus avoiding the trilemma in Proposition 2), and therefore
cannot be consistently estimated without further assumptions.29 However, Lee (2009) popularized
a method for obtaining bounds on θIntensive under the monotonicity assumption that, for example,
everyone with positive earnings without receiving a training would also have positive earnings when
receiving the training.30 Bounds on θIntensive can be reported alongside measures of the extensive
margin effect, such as the change in the probability of having a non-zero outcome, P pY p1q ą

0q ´ P pY p0q ą 0q. One can also potentially tighten the bounds (or restore point-identification) by
imposing additional assumptions on the joint distribution of the potential outcomes—we provide
an example of this in our application to Carranza et al. (2022) below; see Zhang, Rubin and Mealli
(2008, 2009) for related approaches.31

We note that the parameter θIntensive is generally distinct from the “intensive margin” marginal
effects implied by two-part models (2PMs), which were recommended for scenarios with zero-valued
outcomes by Mullahy and Norton (2023), among others. In Appendix D, we consider the causal
interpretation of the marginal effects of 2PMs, building on the discussion in Angrist (2001). Our
decomposition shows that the marginal effects from 2PMs yield the sum of a causal parameter
similar to θIntensive as well as a “selection term” comparing potential outcomes for individuals for
whom treatment only has an intensive margin effect to those with an extensive margin effect. It
thus will generally be difficult to ascribe a causal interpretation to the marginal effects of 2PMs
without assumptions about this selection.

29θIntensive also does not take the form EP rgpY p1q, Y p0qqs, although it can be written as

EP r1rY p1q ą 0, Y p0q ą 0s logpY p1q{Y p0qqs

EP r1rY p1q ą 0, Y p0q ą 0ss
,

where both the numerator and denominator take this form.
30See, also, Zhang and Rubin (2003) for related results, including bounds without the monotonicity assumption.
31We note that the Lee (2009) bounds will tend to be tight when the extensive margin effect is close to zero. As

noted in Remark 2, this is precisely the setting where ATEs for log-like transformations are relatively insensitive to
finite changes in scale.
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5 Empirical applications

In this section, we focus on three concrete empirical applications to illustrate how the alternative
parameters described in Section 4 can be estimated in practice. To illustrate a range of possible
applications, we consider a randomized controlled trial, a difference-in-differences design, and an
instrumental variables design.

5.1 An RCT setting: Carranza et al. (2022)

Carranza et al. (2022) conduct a randomized controlled trial (RCT) in South Africa. Individuals
randomized to the treatment group are provided with certified test results that they can show to
prospective employers to vouch for their skills. Individuals in the control group do not receive
test results.32 They then investigate how this treatment impacts labor market outcomes such as
employment, hours worked, and earnings. We focus here on the effects on hours worked.

Original specification and sensitivity to units. Carranza et al. (2022) estimate the effect of
their randomized treatment on the inverse hyperbolic sine of weekly hours worked. Formally, they
estimate the OLS regression specification

arcsinhpYiq “ β0 ` Diβ1 ` X 1
iγ ` ui, (3)

where Yi is average weekly hours worked for unit i, Di is an indicator for whether unit i was in
the treatment group, and Xi is a vector of controls.33 Their estimate of the ATE (β̂1) is 0.201
(see column (1) in Table 3). They interpret this as a 20% change in hours: “Certification increases
average weekly hours worked, coded as zero for nonemployed candidates, by 20 percent” (p. 3560).

arcsinh(weekly hrs) arcsinh(yearly hrs) arcsinh(FTEs)

Treatment 0.201 0.417 0.031
(0.052) (0.096) (0.012)

Units of outcome: Weekly Hrs Yearly Hrs FTEs

Table 3: Estimates using arcsinhpY q with different units of Y in Carranza et al. (2022)

Note: This table shows estimates of the average treatment effect in Carranza et al. (2022) on the inverse hyperbolic
sine of hours worked, estimated using (3). In the first column, the outcome is the inverse hyperbolic sine of weekly
hours, as in the original paper. The remaining columns use the inverse hyperbolic sine of annualized hours (weekly
hours times 52) or the inverse hyperbolic sine of the number of full-time equivalents worked (weekly hours divided by
40). Standard errors are clustered at the assessment date (the unit of treatment assignment) as in the original paper.

32Some individuals are also assigned to a “placebo” arm in which they are provided the test results but the form
does not include the individual’s name, and thus cannot credibly be shared with employers. We focus on the effect
of the main treatment relative to the pure control group.

33Carranza et al. (2022) include individuals receiving the “placebo” treatment in the sample and add an indicator
for receiving the placebo treatment in Xi. We follow the same practice, although the results are similar if units
receiving the placebo treatment are dropped.
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However, the results in Section 2 suggest that the estimate of β1 should not be interpreted as
a percentage effect, since it depends on the units of the outcome. To illustrate this, in columns (2)
and (3) we re-estimate specification (3) with Yi redefined to be (a) yearly hours worked, i.e. weekly
hours times 52, or (b) the number of full-time equivalents (FTE) worked, i.e. weekly hours divided
by 40. The results change quite substantially depending on the units used, with an estimate of
0.417 using yearly hours and 0.031 using FTEs. We therefore turn next to alternative approaches
with a percentage interpretation in this setting.

Percentage changes in the average. The average number of (weekly) hours worked was 9.84
in the treated group and 8.85 in the control group. A simple summary of the treatment effect is
thus that average hours worked were 11% higher in the treated group (9.84{8.85 “ 1.11). This is
an estimate of the parameter θATE% “ ErY p1q ´ Y p0qs{ErY p0qs discussed in Section 4.1 above.
A numerically equivalent way to obtain this estimate of 11% is to use Poisson quasi-maximum
likelihood estimation (Poisson QMLE) to estimate

Yi “ exppβ0 ` β1DiqUi (4)

and then calculate θ̂ATE% “ exppβ̂1q ´ 1 “ 0.11 (see column (1) in Table 4).34 This formulation
in terms of Poisson QMLE is useful since it allows us to include covariates to potentially increase
precision. Column (2) of Table 4 shows the estimate of θ̂ATE% from estimating

Yi “ exppβ0 ` β1Di ` X 1
iγqUi (5)

by Poisson QMLE, with smaller standard errors than in column (1) (0.069 vs. 0.081).

(1) (2)

β0 2.180 0.150
(0.058) (0.311)

β1 0.106 0.150
(0.072) (0.060)

Implied Prop. Effect 0.112 0.150
(0.081) (0.069)

Covariates N Y

Table 4: Poisson Regression and Implied Proportional Effects in Carranza et al. (2022).

Note: the first two rows of column (1) show the estimates of the coefficients β0 and β1 in (4), estimated using Poisson
QMLE. The third row shows the implied estimate of the proportional effect, ErY p1q ´ Y p0qs{ErY p0qs, calculated as
θ̂ATE% “ exppβ̂1q ´1. The second column shows analogous estimates using (5), which adds controls for pre-treatment
covariates (we do not show the coefficients on the controls in the interest of brevity). Standard errors are clustered
at the assessment date (the unit of treatment assignment) as in the original paper.

34This estimation is done in the sample of treated units and control units, discarding the placebo group. One could
equivalently retain the units in the placebo group and add an indicator for the placebo group to (4).
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Separate estimates for the extensive/intensive margins. As shown in Table 1, the treatment
in Carranza et al. (2022) has an estimated extensive margin treatment effect of 0.055, meaning that
it increases the fraction of people with positive hours worked by 5.5 percentage points. We may be
interested in whether the overall 11% increase in hours worked is driven entirely by the extensive
margin, or whether there is an intensive margin effect. That is, does the treatment increase hours
only by bringing people into the labor force, or does it also allow people who would have worked
anyway to find jobs with more hours (e.g. full-time instead of part-time)? To this end, we can use
the method of Lee (2009) to compute bounds for the effect of the treatment for “always-takers” who
would have positive hours worked regardless of treatment (Y p1q ą 0, Y p0q ą 0).35 The Lee bounds
approach requires the monotonicity assumption that anyone who would work positive hours without
the treatment would also work positive hours when treated (i.e., P pY p1q “ 0, Y p0q ą 0q “ 0). This
seems reasonable if workers only share the information provided by the treatment when it helps
their job prospects. It could be violated, however, if workers mistakenly share their test score
results when in fact employers view them negatively.

Column 1 of Table 5 reports bounds of r´0.20, 0.28s for the effect of the treatment on log hours
worked by the always-takers, while Column 2 shows bounds of r´6.67, 2.77s for weekly hours (in
levels). Unfortunately, in this setting the Lee bounds are fairly wide, including both a zero intensive-
margin effect as well as fairly large intensive-margin effects (up to 28 log points). Thus, without
further assumptions, the data is not particularly informative about the size of the intensive margin.

We can, however, say more if we are willing to impose some assumptions about how the always-
takers, who would work regardless of treatment status (Y p1q ą 0, Y p0q ą 0), compare to the
compliers (Y p1q ą 0, Y p0q “ 0), who only work positive hours when receiving the treatment. We
might reasonably expect that the compliers are negatively selected relative to the always-takers and
thus would work fewer hours when receiving treatment. We can formalize this by imposing that
ErY p1q | Compliers “ p1 ´ cqErY p1q | Always-takers, i.e. that average hours worked for compliers
under treatment is 100c% lower than for always takers. Columns 3 through 5 of Table 5 report
estimates of the average effect on the always-takers, assuming c “ 0, 0.25, and 0.5, respectively.36

If we assume that always-takers and compliers work an equal number of hours under treatment
(c “ 0), then our point estimates suggest that there is actually a negative intensive-margin effect
for the always-takers (´1.02 weekly hours). Under the assumption that compliers work 25% fewer
hours (c “ 0.25), the estimated effect for always-takers is near zero (´0.07 weekly hours), consistent
with no important intensive margin. Finally, if we assume compliers work half as many hours as
the always-takers (c “ 0.5), then our estimates suggest a positive intensive margin effect (0.95
weekly hours). Our assessment of the importance of the intensive margin thus depends on how
negatively-selected we think compliers are relative to always-takers.

35We again exclude units receiving the “placebo treatment.”
36Under the assumptions in Lee (2009), ErY p1q | Y p1q ą 0s “ θErY p1q | Always-takers`p1´θqErY p1q | Compliers,

where θ “ P pY p0q ą 0q{P pY p1q ą 0q. Plugging in ErY p1q | Compliers “ p1 ´ cqErY p1q | Always-takers, it follows
that ErY p1q | Always-takers “ 1{pθ ` p1 ´ cqp1 ´ θqqErY p1q | Y p1q ą 0s. Further, ErY p0q | Always-takers “ ErY p0q |

Y p0q ą 0s. Our estimation plugs in sample analogs to these expressions to estimate ErY p1q ´ Y p0q | Always-takers.
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(1) (2) (3) (4) (5)

Lower bound ´0.195 ´6.665
p0.064q p1.366q

Upper bound 0.283 2.771
p0.114q p2.067q

Point estimate ´1.025 ´0.069 0.954
p1.182q p1.349q p1.588q

units Log(Hours) Hours Hours Hours Hours
c 0 0.25 0.5

Table 5: Bounds and point estimates for the intensive margin treatment effect in Carranza et al.
(2022)

Note: This table shows bounds and point estimates of the intensive margin treatment effect in Carranza et al. (2022),
i.e. the treatment effect on hours worked for “always-takers” who would work positive hours regardless of treatment
status. The first first two columns of the table show Lee (2009) bounds for the effect of treatment on the always-takers
when the outcome is logpHoursq and weekly hours, respectively. Columns 3 through 5 show point estimates for the
effect on weekly hours worked for always-takers under the assumption that average hours worked by “compliers”
(who work only when treated) are 100c% lower than for the always-takers. Standard errors are calculated via a
non-parametric bootstrap using 1,000 draws, clustered at the assessment date level.

5.2 A DiD setting: Sequeira (2016)

Sequeira (2016) studies a decrease in tariffs on trade between Mozambique and South Africa which
occurred in 2008. She is interested in whether the reduction in tariffs reduced bribes paid to customs
officers (among other outcomes). To study this question, she utilizes a difference-in-differences design
comparing the change in bribes paid for products that were affected by the tariff change to that for
a comparison group of products that did not experience a change in tariffs.

Original specification and sensitivity to units. Sequeira (2016) has repeated cross-sectional
data with information on the bribe amount Yit paid on shipment i in year t. She estimates the
regression specification

logp1 ` Yitq “ β0 ` Di ˆ Postt β1 ` Di β2 ` Postt β3 ` X 1
itβ4 ` ϵit, (6)

where Di is an indicator for whether shipment i is for a product type affected by the tariff change
in 2008, Postt is an indicator for whether year t is after the tariff change, and Xit is a vector of
covariates related to shipment i in period t. Sequeira (2016) estimates (6) with Yit measured in
2007 Mozambican Metical (MZN) and obtains β̂1,pMZNq “ ´3.7 (SE “ 1.1). However, estimating
the same specification with Yit measured in thousands of U.S. dollars instead yields an estimate
of β̂1,p$1000q “ ´0.11 (SE “ 0.070).37 These results reinforce the conclusion from Section 2 that
treatment effects for mpyq “ logp1 ` yq should not be interpreted as approximating a percentage
effect.

37We use the conversion rate of 1 USD “ 24.48 MZN as of January 1, 2007, as provided by fxtop.com.
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In what follows, we discuss a variety of alternative approaches that may be reasonable in this
context. We note that in a non-experimental setting like this, different approaches may rely on
different identifying assumptions. We therefore explicitly discuss the identifying assumptions needed
by each of the methods we discuss.

Proportional treatment effects. One natural approach here is to target the average propor-
tional treatment effect on the treated,

θATT% “
ErYitp1q | Di “ 1,Postt “ 1s ´ ErYitp0q | Di “ 1,Postt “ 1s

ErYitp0q | Di “ 1,Postt “ 1s
.

This is the percentage change in the average outcome for the treated group in the post-treatment
period.

Identification of θATT% requires us to infer the counterfactual post-treatment mean outcome
for the treated group, ErYitp0q | Di “ 1,Postt “ 1s. Of course, one approach to obtain such
identification would be to assume parallel trends in levels. However, given that the treated and
control groups have different pre-treatment means (see the bottom panel of Table 6), it may be
unreasonable to expect that time-varying factors (e.g. the macroeconomy) have equal level effects on
the outcome. An alternative identifying assumption is to impose that, in the absence of treatment,
the percentage changes in the mean would have been the same for the treated and control group. As
in Wooldridge (2023), this can be formalized using a “ratio” version of the parallel trends assumption,

ErYitp0q | Di “ 1,Postt “ 1s

ErYitp0q | Di “ 1,Postt “ 0s
“

ErYitp0q | Di “ 0,Postt “ 1s

ErYitp0q | Di “ 0,Postt “ 0s
. (7)

Intuitively, (7) states that if the treatment had not occurred, the average percentage change in the
mean outcome for the treated group would have been the same as the average percentage change
in the mean outcome for the control group. Under (7), we can thus estimate the counterfactual
percentage change in the mean outcome for the treated group using the observed percentage change
for the control group.

Table 6 shows that the sample mean of the outcome for the treated group decreased by 75%
between the pre-treatment and post-treatment periods (from 4,742 to 1,172 (MZN)). Under the
ratio parallel trends assumption (7), this suggests that the mean outcome for the treated group
would also have decreased by 75% in the absence of treatment, thus implying an estimate of 2, 602
for the counterfactual mean outcome for the treated group. The actual post-treatment mean for the
treated group is 465, which is 82% below this implied counterfactual. This implies that the tariff
reduction reduced the average bribe in the post-treatment period by 82%, i.e. θ̂ATT% “ ´0.82.
Conveniently, this estimate can also be obtained using Poisson QMLE to estimate

Yit “ exppβ0 ` Di ˆ Postt β1 ` Di β2 ` Postt β3qϵit (8)

and then computing θ̂ATT% “ exppβ̂1q ´ 1 “ ´0.82, as shown in column (1) of Table 6.
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(1) (2)

Post ˆ Treatment ´1.722 ´1.272
p0.632q p0.606q

Prop. Effect ´0.821 ´0.720
p0.113q p0.170q

Covariates N Y

Treated Group Means (Pre, Post): 10527 465
Untreated Group Means (Pre, Post): 4742 1172

Table 6: Poisson regression estimates of θATT%

Note: this table shows Poisson regression estimates of (8) and (9) in columns (1) and (2), respectively. The first row of
the table shows the estimate β̂1. The second row shows exppβ̂1q ´1, which is the implied estimate of the proportional
treatment effect θATT%. The coefficients on control variables are omitted for brevity. Standard errors are clustered
at the four-digit product code as in the original paper. The mean bribe amounts (in MZN) by treatment group and
time period are displayed in the bottom panel. The pre-period refers to the year 2007, whereas the post-treatment
period is an average over the years 2008, 2011, and 2012 (the three post-treatment years for which data is available).

We can also re-incorporate the covariates Xit by estimating

Yit “ exppβ0 ` Di ˆ Postt β1 ` Di β2 ` Postt β3 ` β1
4Xitqϵit, (9)

which yields an estimate of θATT% of ´0.72, as shown in the second column of Table 6. As formalized
in Wooldridge (2023), this estimate will be a consistent estimate of θATT% if (7) holds conditional
on Xit, and the conditional expectation of Yit takes the functional form implied by (9) (assuming
ϵit has mean 1 conditional on the covariates). The approach with covariates thus suggests that the
tariff change reduced the average bribe for treated products by 72% in the post-treatment period.

Sequeira (2016)’s data only contains information on one year prior to treatment (2007), and so
in this context it is not possible to evaluate the plausibility of (7) using periods prior to the policy
change of interest. If multiple pre-treatment periods were available, however, one could estimate a
Poisson QMLE event-study of the form

Yit “ exp

˜

λt ` Di β2 `
ÿ

r‰´1

Di ˆ rRelativeTimet “ rsβES
r

¸

ϵit, (10)

where RelativeTimet “ t ´ 2008 is the time relative to the treatment date. The event-study
coefficients βES

r for r ă 0 are analogous to “pre-trends” coefficients in typical difference-in-differences
event-studies, and are informative about whether the pre-treatment analogue to (7) holds.38

38More precisely, the exponentiated coefficients exppβ̂rq ´ 1 correspond to the implied “placebo” proportional
treatment effects for periods before treatment. We recommend plotting the exponentiated coefficients in event-
studies, although we note that exppβq ´ 1 « β for β « 0. As with typical tests for pre-trends, one should be cautious
that a failure to reject the null that the pre-treatment coefficients equal zero does not necessarily imply that the
identifying assumption is satisfied (Kahn-Lang and Lang, 2020; Roth, 2022). One can (partially) address these issues
by applying sensitivity analysis tools for event-studies (e.g. Rambachan and Roth, 2023) to estimates of (10) to
further gauge the robustness of the findings to violations of the identifying assumptions. We also refer the reader to
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Log effects with calibrated extensive margin value. The analysis above presented estimates
of θATT%, the proportional change in the average bribe caused by the treatment. It is well-known
that averages can be heavily influenced by observations in the tail, especially when the outcome has
a skewed distribution, as is the case here (see Figure 2). One might argue that a world in which
most products receive medium-sized bribes is more corrupt than one in which a very small fraction
of products receive large bribes—even if they both produce the same average bribe amount. This
motivates studying the treatment effect on a concave transformation of the outcome that is less
heavily influenced by outcomes in the tail of the distribution. As an illustration of this, we first
normalize the outcome so that 1 corresponds to the value of the minimum non-zero bribe in the data
(that is, we divide by ymin “ minYitą0 Yit “ 15.68 MZN). We then estimate the treatment effect for
the transformed outcome mpY q, where mpyq “ logpyq for y ą 0 and mp0q “ ´x for some choice of
x, as described in Section 4.2. If x is set to 0, then this estimates the treatment effect in logs where
all zero bribes are set to equal the smallest positive bribe in the data; this specification thus “shuts
off” the extensive margin change between 0 and ymin. If instead x is set to 0.1, for example, then a
change between 0 and ymin is valued as the equivalent of a 10 log point change along the intensive
margin.

We estimate the treatment effect for these transformations using the analogue to (6) that replaces
logp1`Yitq with mpYitq on the left-hand side.39 The results for x P t0, 0.1, 1, 3u are shown in Table 7.
Column (1) shows an effect of 249 log points (β̂1 “ ´2.49) when we treat zero bribes as if they were
equal to ymin (i.e. setting x “ 0). The estimated treatment effect grows in magnitude as we place
more value on the extensive margin by increasing x. Interestingly, the original estimate in Sequeira
(2016) of ´3.748 using logp1 ` Y q is similar to what we obtain when we value a change from 0 to
ymin at 300 log points (x “ 3). The original specification can thus be viewed as placing a rather
large weight on the extensive margin.

(1) (2) (3) (4)

Post ˆ Treatment ´2.493 ´2.538 ´2.949 ´3.860
p0.740q p0.752q p0.861q p1.106q

Extensive margin value (x): 0.000 0.100 1.000 3.000

Table 7: Explicit calibration of the extensive margin in Sequeira (2016)

Note: this table shows estimates of the treatment effect on the treated using mpY q as the outcome in Sequeira
(2016), where mpyq is defined to equal logpyq for y ą 0 and ´x for y “ 0. The outcome is normalized so that Y “ 1
corresponds to the minimum non-zero value of the outcome. Thus, the treatment effect assigns a value of 100x log
points to an extensive margin change between 0 and the minimum non-zero value of Y . The treatment effects are
estimated using (6), except replacing logp1`Yitq with mpYitq. Standard errors are clustered at the four-digit product
code as in the original paper.

Wooldridge (2023) for extensions of the Poisson regression approach to settings with staggered treatment timing.
39As usual, identification of the treatment effect for mpY q using difference-in-differences requires parallel trends for

mpY p0qq. The identifying assumption thus varies depending on the choice of x. The results in Roth and Sant’Anna
(2023) imply that parallel trends will hold for all values of x when a parallel trends assumption is satisfied for the
distribution of Y p0q. If more pre-treatment periods were available, these identifying assumptions could be partially
evaluated using pre-trends tests. See Remark 9 for additional discussion of identification.
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Figure 2: Density of bribe amount in Sequeira (2016)
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Note: this figure shows a kernel density estimate of the bribe amount in Sequeira (2016), pooling across all observations
with a positive bribe. The kernel density estimates are constructed using the default settings of the stat_density
function in R.

5.3 An IV setting: Berkouwer and Dean (2022)

Berkouwer and Dean (2022) conduct an RCT in Nairobi in which they randomize the price for
energy-efficient stoves. They use the randomized price (pi) as an instrument for whether an indi-
vidual i buys an energy-efficient stove (Di). They use this instrument to estimate the effects of
stove-adoption on outcomes such as charcoal spending (Yi).

Original specification and sensitivity to scale. Let Xi be a vector of control variables (in-
cluding a constant). Berkouwer and Dean (2022) estimate

arcsinhpYiq “ Diβ ` X 1
iγ ` ϵi (11)

by two-stage least squares (TSLS), using pi as an instrument for Di.40 (They also report results
where spending is measured in levels.) The estimated coefficient β̂ is an estimate of the LATE
of stove adoption on the arcsinh of charcoal spending for instrument-compliers whose decision of
whether to purchase the stove depends on the price offered in the experiment.41 In Berkouwer and

40More precisely, each observation i is an individual-by-week pair, and some (but not all) individuals are surveyed
on multiple weeks. Standard errors are clustered at the respondent level.

41We use the phrase “instrument-compliers” to distinguish compliers for the instrument, whose value of Dpzq

depends on z, from “compliers” discussed earlier who have Y p1q ą 0, Y p0q “ 0. Since the instrument takes on multiple
values (i.e. multiple price offers), β corresponds to a weighted average of treatment effects across instrument-compliers
for different values of the instrument (Angrist, Graddy and Imbens, 2000).

29



Dean (2022), Yi is measured as weekly charcoal spending in dollars. They obtain a coefficient of
β̂ “ ´0.50 and write “[t]he 50 log point reduction corresponds to a 39 percent decrease in charcoal
consumption [since expp´0.50q “ 1 ´ 0.39]” (p. 3306).

However, if we change the units of the outcome to annual charcoal spending in Kenyan shillings,
the original currency in which charcoal spending was measured, the same specification yields an es-
timate of ´0.44. Relative to our previous applications, the change in the treatment effect estimates
is fairly small for these choices of units, due to a small estimated extensive margin of 0.01 (see
Table 1).42 Nevertheless, the fact that the treatment effects using an arcsinh-transformed outcome
depend on the units should give us pause in interpreting them as percentages. Indeed, a percentage
effect is not well-defined for someone who has non-zero spending under treatment and zero spend-
ing under the control, so an average individual-level percentage effect does not make sense if the
treatment can affect whether one has any charcoal spending.

Berkouwer and Dean (2022) first discuss the LATE in levels, and then immediately afterwards
state that the treatment effect for the arcsinh-transformed outcome “corresponds to a 39 percent
decrease in charcoal consumption” (p. 3306). The main goal of taking the arcsinh transformation
here thus appears to be to obtain a treatment effect with a percentage interpretation. We therefore
next implement two approaches with an (approximate) percentage interpretation in this context.

Proportional LATE. One natural approach in this context is to estimate the proportional change
in the average outcome for instrument-compliers, i.e. to estimate θATE% among the population of
instrument-compliers. Put otherwise, we can express the LATE in levels as a percentage of the
control mean for instrument-compliers. An estimate of the LATE in levels is naturally obtained
using TSLS specification (11) with Yi as the outcome, which yields an estimate of ´2.46. As
described in Abadie (2002), we can likewise obtain an estimate of the control instrument-complier
mean by using TSLS with ´pDi ´ 1q ¨ Yi as the outcome, which yields an estimate of 5.86. Putting
these together, we obtain an estimate of θATE% for instrument-compliers of ´2.46{5.86 “ ´0.42

(SE = 0.046), which suggests that average charcoal spending is 42% lower for instrument-compliers
under treatment than under control.43 If pollution is proportional to charcoal spending, then this
parameter is economically relevant as it corresponds to the percentage reduction in pollution for
instrument-compliers from gaining access to the efficient stove.

Lee bounds. Berkouwer and Dean (2022) benchmark their treatment effect estimates relative to
engineering estimates of the efficiency gains of using an efficient stove relative to a non-efficient
one. For this benchmarking exercise, it seems sensible to focus on the intensive-margin effect of the

42We note, however, that the t-statistic for the effect on arcsinhpYiq is rather sensitive here, changing from approx-
imately 7 to 3 depending on the units.

43The standard error was calculated via a non-parametric bootstrap with 1,000 draws, clustered at the respondent
level. We note that with a binary instrument, an estimate of θIntensive for instrument-compliers can be obtained
using Poisson IV regression (e.g. the ivpoisson command in Stata); see Angrist (2001). However, we are not aware
of a LATE interpretation of Poisson IV regression with a multi-valued instrument, and thus do not pursue it here.
Whether Poisson IV regression has such an interpretation with a continuous IV strikes us an interesting topic for
future work.
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treatment—i.e., the treatment effect for instrument-compliers who would use a non-efficient stove if
offered a high price and an efficient one if offered a low price. To do so, we can form Lee (2009)-type
bounds for the average treatment effect in logs for instrument-compliers who would have positive
charcoal spending regardless of treatment status.44

The bounds on θIntensive for instrument-compliers are r´0.565,´0.538s (with SEs for the lower
and upper bounds of 0.072 and 0.075).45 This implies that for the instrument-compliers who would
spend on charcoal regardless of treatment status, spending decreases by 54 to 56 log points. We
note that the Lee bounds are fairly tight in this case, as tends to be the case when the extensive
margin is small. It is also worth noting that in this example, the estimated treatment effects using
arcsinhpYiq—both in terms of weekly spending in dollars and in terms of annual spending in Kenyan
shillings—fall outside of the Lee bounds, although they are fairly close to the upper bound when
using weekly spending in dollars.

6 Conclusion

It is common in empirical work to estimate ATEs for transformations such as logp1`Y q or arcsinhpY q

which are well-defined at zero and behave like logpY q for large values of Y . We show that the ATEs
for such transformations should not be interpreted as percentages, since they depend arbitrarily on
the units of the outcome when there is an extensive margin. Further, we show that any parameter
that is an average of individual-level treatment effects of the form EP rgpY p1q, Y p0qqs must be scale-
dependent if it is point-identified and well-defined at zero. We discuss several alternative approaches,
including estimating scale-invariant normalized parameters (e.g. via Poisson regression), explicitly
calibrating the value placed on the intensive versus extensive margins, and separately estimating
effects for the intensive and extensive margins (e.g. using Lee bounds). We illustrate how these
approaches can be applied in practice in three empirical applications.

44The validity of the Lee (2009)-type bounds requires the “monotonicity” assumption that all instrument-compliers
who would have some charcoal consumption when not buying an efficient stove would also have some charcoal
consumption when buying an efficient stove, which seems reasonable. Note that this is a distinct assumption from
the instrument monotonicity assumption needed for a LATE interpretation for instrumental variables (Imbens and
Angrist, 1994), which in this context states that anyone who would buy a stove at a higher price would also buy at
a lower price.

45We obtain these estimates using the procedure in Abadie (2002), as described in detail in Appendix E.
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A Proofs of results in the main text

A.1 Proof of Proposition 1

Proposition 1. Suppose that:

1. (The function m is continuous and increasing) m : r0,8q Ñ R is a continuous, weakly in-
creasing function.

2. (The function m behaves like log for large values) mpyq{ logpyq Ñ 1 as y Ñ 8.

3. (Treatment affects the extensive margin) P pY p1q “ 0q ‰ P pY p0q “ 0q.

4. (Finite expectations) EPY pdq
r| logpY pdqq| | Y pdq ą 0s ă 8 for d “ 0, 1.46

Then, for every θ˚ P p0,8q, there exists an a ą 0 such that |θpaq| “ θ˚. In particular, θpaq is
continuous with θpaq Ñ 0 as a Ñ 0 and |θpaq| Ñ 8 as a Ñ 8.

Proof. Note that θp0q “ EP rmp0qs ´EP rmp0qs “ 0. Additionally, Proposition 4 below implies that
|θpaq| Ñ 8 as a Ñ 8. To establish the proof, it thus suffices to show that θpaq is continuous on
r0,8q. The desired result is then immediate from the intermediate value theorem.

To establish continuity, fix some a P r0,8q and consider a sequence an Ñ a. Without loss of
generality, assume an ă a ` 1 for all n. Let manpyq “ mpanyq. Since m is continuous, manpyq Ñ

mapyq pointwise. We are done if we can apply the dominated convergence theorem to show that
therefore ErmanpY qs Ñ ErmapY qs.

Since mpyq{ logpyq Ñ 1 as y Ñ 8, there exists y such that mpyq ă 2 logpyq for all y ě y. From
the monotonicity of m, it follows that

mp0q ď mpyq ď 1ry ď ysmpyq ` 1ry ą ys2 logpyq

ď η ` 2 ¨ 1ry ą ys logpyq, (A.1)

where η “ |mpyq|, and hence

mp0q ď manpyq ď η ` 2 ¨ 1rany ą ys logpanyq

ď η ` 2 ¨ 1ry ą 0s ¨ p| logpa ` 1q| ` | logpyq|q “: mpyq.

for all n. Hence, we have that |manpyq| ď |mp0q| ` mpyq for all n, and the bounding function
is integrable for Y pdq for d “ 0, 1 by the fourth assumption of the proposition. It follows from
the dominated convergence theorem that EP rmanpY pdqqs Ñ EP rmapY pdqqs for d “ 0, 1, and thus
θpanq Ñ θpaq, as we wished to show.

46This assumption simply ensures that EPY pdq
r|mpaY pdqq| | Y ą 0s exists for all values of a ą 0.

1



A.2 Proof of Proposition 2

Proposition 2 (A trilemma). The following three properties cannot hold simultaneously:

(a) θg “ EP rgpY p1q, Y p0qqs for a non-constant function g : r0,8q2 Ñ R that is weakly increasing
in its first argument.

(b) The function g is scale-invariant.

(c) θg is point-identified over P`.47

Proof. To establish the proof of Proposition 2, we rely on Proposition 3, which shows that the only
scale-invariant parameter of the form EP rgpY p1q, Y p0qqs that is identified over distributions on the
positive reals is the ATE in logs (up to an affine transformation).

Given Proposition 3, note that if g : r0,8q2 Ñ R is increasing in y1, then it cannot be equal
to c logpy1{y0q ` d for c ą 0 everywhere on p0,8q2, since this would imply that limy1Ñ0 gpy1, 1q “

´8 ă gp0, 1q. Proposition 2 is then immediate from Proposition 3, which shows that if properties
(a) and (b) are satisfied, and θg is point-identified over P`` Ă P`, then g “ c logpy1{y0q ` d on
p0,8q2. Thus, there does not exist such a g.

Proposition 3. Let P`` denote the set of distributions over compact subsets of p0,8q2. Suppose
g : p0,8q2 Ñ R is weakly increasing in y1 and scale-invariant. Then θg is point-identified over P``

if and only if gpy1, y0q “ c ¨ plogpy1q ´ logpy0qq ` d, for constants c ě 0 and d P R.

Proof. We first show that point-identification over P`` implies that gp¨, ¨q must be additively sep-
arable. We do so by considering the points ty0, y0 ` bu ˆ ty1, y1 ` au on a rectangular grid. If
gp¨, ¨q is not additively separable, then its expectation with respect to distributions supported on
the rectangular grid depends on the correlation. Similar arguments appear in, e.g., Fan, Guerre and
Zhu (2017).

Formally, suppose that there there exist positive values y1, y0, a, b ą 0 such that

gpy1, y0q ` gpy1 ` a, y0 ` bq ‰ gpy1 ` a, y0q ` gpy1, y0 ` bq.

Now, consider the marginal distributions PY pdq such that P pY p1q “ y1q “ 1
2 “ P pY p1q “ y1 `

aq and P pY p0q “ y0q “ 1
2 “ P pY p0q “ y0 ` bq. Let P1 and P2 denote the joint distributions

corresponding with these marginals and perfect positive and negative correlation of the potential
outcomes, respectively. Then we have that

EP1pgpY p1q, Y p0qqq “
1

2
pgpy1, y0q ` gpy1 ` a, y0 ` bqq

47A minor technical complication arises from the fact that EP rgpY p1q, Y p0qs could be infinite for some P . For the
purposes of our result, it suffices to trivially define θg to be identified in this case. Alternatively, the same result
holds if part (c) is modified to impose only that θg is point-identified over all distributions in P` with finite support,
thus avoiding issues related to undefined expectations.
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‰
1

2
pgpy1 ` a, y0q ` gpy1, y0 ` bqq

“ EP2pgpY p1q, Y p0qqq,

and thus θg is not point-identified from the marginals at P1. Hence, if θg is identified over P``,
then it must be that

gpy1, y0q ` gpy1 ` a, y0 ` bq “ gpy1 ` a, y0q ` gpy1, y0 ` bq for all y1, y0, a, b ą 0,

and hence

gpy1 ` a, y0q ´ gpy1, y0q “ gpy1 ` a, y0 ` bq ´ gpy1, y0 ` bq for all y1, y0, a, b ą 0.

It follows that we can write gpy1, y0q “ rpy1q ` qp 1
y0

q, where rpy1q “ gpy1, 1q ´ gp1, 1q and qp 1
y0

q “

gp1, y0q.
Second, we show that homogeneity of degree zero, combined with monotonicity, implies that g

must be a difference in logarithms. Observe that since g is scale-invariant,

gpy1, y0q “ g

ˆ

y1
y0

,
y0
y0

˙

“ g

ˆ

y1
y0

, 1

˙

“: h

ˆ

y1
y0

˙

,

where h is an increasing function. We thus have that for any a, b ą 0,

gp1, 1q “ hp1q “ rp1q ` qp1q

gpa, 1q “ hpaq “ rpaq ` qp1q

g

ˆ

1,
1

b

˙

“ hpbq “ rp1q ` qpbq

g

ˆ

a,
1

b

˙

“ hpabq “ rpaq ` qpbq

and hence hpabq “ hpaq`hpbq´hp1q. It follows that h̃pxq “ hpxq´hp1q is an increasing function such
that h̃pabq “ h̃paq ` h̃pbq for all a, b P R, i.e. an increasing function satisfying Cauchy’s logarithmic
function equation: ϕpabq “ ϕpaq ` ϕpbq for all positive reals a, b. Recall that if a function is
increasing, then it has countably many discontinuity points, and thus is continuous somewhere.
It is a well-known result in functional equations that the only solutions to Cauchy’s logarithmic
equation are of the form ϕptq “ c logptq, if we require that these solutions are continuous at some
point; see Aczél (1966), Theorem 2 in Section 2.1.2.48 Since we require monotonicity, the constant
c ě 0. Thus, gpy1, y0q “ hpy1{y0q “ h̃py1{y0q ` h̃p1q “ c logpy1q ´ c logpy0q ` h̃p1q. Letting d “ h̃p1q

completes the proof of Proposition 3.
48Correspondingly, non-trivial solutions to Cauchy’s logarithmic equations are highly ill-behaved.
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B Extensions

B.1 Sensitivity to finite changes in scale

The following result formalizes the discussion in Remark 2 about how the ATE for mpY q changes
with finite changes in the scale of Y .

Proposition 4. Suppose that:

1. m : r0,8q Ñ R is a weakly increasing function.

2. mpyq{ logpyq Ñ 1 as y Ñ 8.

3. EPY pdq
r| log Y pdq| | Y pdq ą 0s ă 8 for d “ 0, 1.

Then, as a Ñ 8,

EP rmpa ¨ Y p1qq ´ mpa ¨ Y p0qqs “ pP pY p1q ą 0q ´ P pY p0q ą 0qq ¨ logpaq ` oplogpaqq.

Proof. Fix a sequence an Ñ 8, and without loss of generality, assume an ą e. We will show that

1

log an
EP rmpanY p1qq ´ mpanY p0qqs Ñ P pY p1q “ 0q ´ P pY p0q “ 0q. (B.1)

Define fnpyq “ mpanyq{ logpanq. Note that fnpyq Ñ 1ry ą 0s pointwise, since fnp0q “ mp0q{ logpanq Ñ

0, while for y ą 0,

fnpyq “
mpanyq

logpanq
“

mpanyq

logpanyq

logpanq ` logpyq

logpanq
Ñ 1,

where we use the fact that mpyq{ logpyq Ñ 1 as y Ñ 8 by assumption. We apply the dominated
convergence theorem to show that EP rfnpY pdqqs Ñ P pY pdq ą 0q.

We showed in the proof to Proposition 1 that

|mpyq| ď κ ` 2 ¨ 1ry ą 0s ¨ | logpyq|

where κ is a constant not depending on y.49 It follows that fn is similarly dominated:

|fnpyq| “
|mpanyq|

logpanq
ď κ ` 2 ¨ 1ry ą 0s ¨ p1 ` | logpyq|q.

Further, since EP r| logpY pdqq| | Y pdq ą 0s is finite by assumption, the upper bound is integrable for
y “ Y pdq for d “ 0, 1. It follows from the dominated convergence theorem that

EP rfnpY pdqqs “ EP

„

mpanY pdqq

logpanq

ȷ

Ñ EP r1rY pdq ą 0ss “ P pY pdq ą 0q.

49In particular, (A.1) implies the inequality for κ “ η ` |mp0q|.
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Equation (B.1) then follows from applying this result for d “ 0, 1 and taking the difference of the
limits.

B.2 Extension to continuous treatments

Although we focus on binary treatment in the main text for simplicity, similar issues arise with
continuously distributed D. Suppose now that D can take a continuum of values on some set
D Ď R. Let Y pdq denote the potential outcome at the dose d, and P the distribution of Y p¨q.
Consider the parameter

θpaq “

ż

D
ωpdqEP rmpaY pdqqs,

which is a weighted sum of the average values of mpaY pdqq across different values of d with weights
ωpdq. For example, in an RCT with a continuous treatment, a regression of mpaY q on D yields a pa-
rameter of the form θpaq where, by the Frisch–Waugh–Lovell theorem, the weights are proportional
to pd ´ ErDsqppdq and integrate to 0.50

We now show that θpaq can be made to have arbitrary magnitude via the choice of a when
there is an extensive margin effect. In particular, by an extensive margin effect we mean that
ş

ωpdqP pY pdq ą 0q ‰ 0, i.e. when there is an average effect on the probability of a zero outcome,
using the same weights ωpdq that are used for θpaq. When θpaq is the regression of mpaY q on D in
an RCT, for example,

ş

ωpdqP pY pdq ą 0q ‰ 0 if the regression of 1rY ą 0s on D yields a non-zero
coefficient.

Proposition 5. Suppose that:

1. The function m satisfies parts 1 and 2 of Proposition 1.

2. (Extensive margin effect)
ş

D ωpdqP pY pdq ą 0q ‰ 0.

3. (Bounded expectations) For all d, EP r| logpY pdqq| | Y pdq ą 0s ă 8.

4. (Regularity for weights) The weights ωpdq satisfy
ş

D ωpdq “ 0,
ş

D |ωpdq| ă 8 and
ş

D |ωpdq| ¨

EP r| logpY pdqq| | Y pdq ą 0s ă 8.

Then for every θ˚ P p0,8q, there exists a ą 0 such |θpaq| “ θ˚. In particular, θpaq is continuous
and θpaq Ñ 0 as a Ñ 0 and |θpaq| Ñ 8 as a Ñ 8.

Proof. Note that θp0q “
ş

ωpdqmp0q “ 0. It thus suffices to show that θpaq is continuous for
a P r0,8q and that |θpaq| Ñ 8 as a Ñ 8. The result then follows from the intermediate value
theorem.

We first show continuity. Fix a P r0,8q and a sequence an Ñ a. Let fnpdq “ ωpdqEP rmpanY pdqqs.
We showed in the proof to Proposition 1 that EP rmpanY pdqqs Ñ EP rmpaY pdqqs, and thus fnpdq Ñ

50Here, ppdq denotes the density of D at d over the randomization distribution.
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ωpdqEP rmpaY pdqqs pointwise. We also showed in the proof to Proposition 1 that for an sufficiently
close to a,

|mpanY q| ď κ ` 2 ¨ 1ry ą 0s ¨ | logpyq|,

for a constant κ not depending on n. It follows that

|fnpdq| ď |ωpdq| ¨ |κ| ` 2|ωpdq| ¨ EP r| logpY pdqq| | Y pdq ą 0s,

and the upper bound is integrable by part 4 of the Proposition. Hence, by the dominated convergence
theorem, we have that θpanq “

ş

D fnpdq Ñ
ş

D ωpdqEP rmpaY pdqs “ θpaq, as needed.
To show that |θpaq| Ñ 8 as a Ñ 8, we will show that

θpaq

logpaq
Ñ

ż

D
ωpdqP rY pdq ą 0s

as a Ñ 8. Consider an Ñ 8, and suppose without loss of generality that an ą e. Observe that

θpanq

logpanq
“

ż

D
ωpdq

EP rmpanY pdqqs

logpanq
.

We showed in the proof to Proposition 4 that for each d,

EP rmpanY pdqqs

logpanq
Ñ P pY pdq ą 0q.

Letting fnpdq “ ωpdq
EP rmpanY pdqqs

logpanq
, we thus have that fnpdq Ñ ωpdqP pY pdq ą 0q pointwise.

Moreover, we showed in the proof to Proposition 1 that

|mpyq| ď κ ` 2 ¨ 1ry ą 0s ¨ | logpyq|

where κ is a constant not depending on y. It follows that

|mpanyq|

logpanq
ď κ ` 2 ¨ 1ry ą 0s ¨ p1 ` | logpyq|q

and thus that
|fnpdq| ď |ωpdq| ¨ pκ ` 2 ` 2EP r| logpY pdq| | Y pdq ą 0sq

where the upper bound is integrable by the fourth part of the proposition. The result then follows
from dominated convergence.

B.3 Extension to OLS estimands and standard errors

As noted in Remark 4, our results imply that any consistent estimator of the ATE for an outcome
of the form mpaY q will be (asymptotically) sensitive to scaling when there is an extensive margin
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effect. Our results thus cover the OLS estimator when it is consistent for the ATE for some (sub)-
population P (e.g. in an RCT or under unconfoundedness). Given the prominence of OLS in
applied work—and the fact that it is sometimes used for non-causal analyses—we now provide a
direct result on the sensitivity to scaling of the estimand of an OLS regression of an outcome of the
form mpaY q on an arbitrary random variable X.

Specifically, suppose that pX,Y q „ Q, for Y P r0,8q and X P RJ , where the first element of X
is a constant. Consider the OLS estimand

βpaq “ EQrXX 1s´1EQrXmpaY qs,

i.e. the population coefficient from a regression of mpaY q on X. We assume that EQrXX 1s is
full-rank so that βpaq is well-defined. Letting βjpaq “ e1

jβpaq be the jth element of βpaq, we will
show that βjpaq can be made to have arbitrary magnitude via the choice of a if γj ‰ 0, where

γ “ EQrXX 1s´1EQrX1rY ą 0ss

is the coefficient from a regression of 1rY ą 0s on X.

Proposition 6. Suppose that

1. The function m satisfies parts 1 and 2 of Proposition 1.

2. (Finite expectations) EQr∥X∥s ă 8 and EQr∥X logpY q∥ | Y ą 0s ă 8 .

Then for every j P t2, ..., Ju, βjpaq{ logpaq Ñ γj as a Ñ 8. Moreover, if γj ‰ 0 for some j P t2, ..., Ju,
then for every β˚

j P p0,8q, there exists a ą 0 such that |βjpaq| “ β˚
j . In particular βjpaq is continuous

with βjpaq Ñ 0 as a Ñ 0 and |βjpaq| Ñ 8 as a Ñ 8.

We note that Proposition 6 implies that the OLS estimator for the jth coefficient, β̂jpaq, will be
arbitrarily sensitive to the choice of a when the corresponding extensive margin OLS estimator γ̂j ,
is non-zero. This follows immediately from setting Q to be the empirical distribution of pYi, Xiq

N
i“1

and applying Proposition 6 (note that part 2 of the Proposition is trivially satisfied for the empirical
distribution, since X and Y are both bounded over the empirical distribution).

OLS Standard Errors. We also show that as a Ñ 8, the t-statistic for the OLS estimate β̂j

constructed using heteroskedasticity-robust standard errors converges to the t-statistic for γ̂j (again
using heteroskedasticity-robust standard errors). Formally, let

Ω̂βpaq “

˜

1

N

ÿ

i

XiX
1
i

¸´1 ˜

1

N

ÿ

i

XiX
1
i ϵ̂ipaq2

¸ ˜

1

N

ÿ

i

XiX
1
i

¸´1

denote the estimator of the heteroskedasticity-robust variance matrix for β̂paq, where ϵ̂ipaq “

mpaYiq ´ X 1
iβ̂paq, and β̂paq is the OLS estimate of βpaq. The t-statistic for β̂jpaq is then t̂βj

paq “
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β̂jpaq{σ̂βj
paq, where σ̂βj

paq “

b

e1
jΩ̂βpaqej{

?
N . Analogously, let

Ω̂γ “

˜

1

N

ÿ

i

XiX
1
i

¸´1 ˜

1

N

ÿ

i

XiX
1
iû

2
i

¸ ˜

1

N

ÿ

i

XiX
1
i

¸´1

be the heteroskedasticity-robust variance estimator for γ̂, the OLS estimate of γ, where ui “ 1rYi ą

0s ´ X 1
iγ̂. The t-statistic for γ̂j is then t̂γj “ γ̂j{σ̂γj , where σ̂γj “

b

e1
jΩ̂γej{

?
N .

Proposition 7. Suppose that
`

1
N

ř

iXiX
1
i

˘

is full-rank and that σ̂γj ą 0. If the function m satisfies
parts 1 and 2 of Proposition 1 and γ̂j ą 0, then t̂βj

paq Ñ t̂γj as a Ñ 8.

It follows that when the units of Y are made large, the t-statistic for a treatment effect estimate
for mpY q estimated using OLS will converge to the t-statistic for the OLS estimate of the extensive
margin. Appendix Figure 1 shows that, indeed, the t-statistics for estimates using arcsinhpY q in the
AER tend to be close to the t-statistics for the extensive margin, and tend to become even closer
after rescaling the units by a factor of 100.

Proof of Proposition 6. Fix j P t2, ..., Ju. Note that βp0q “ EQrXX 1s´1ErXmp0qs, is the coefficient
from a regression of a constant outcome mp0q on X, and thus β1p0q “ mp0q while βkp0q “ 0 for k ě 2.
Thus βjp0q “ 0. To complete the proof, we will first show that βjpanq “ γj logpanq ` oplogpanqq.
Hence, if γj ą 0, then |βjpaq| Ñ 8 as a Ñ 8. We will then establish that βjpaq is continuous
for a P r0,8q. The fact that one can obtain any positive value for |βjpaq| then follows from the
intermediate value theorem.

For ease of notation, let ν 1 “ e1
jEQrXX 1s´1, so that βjpaq “ EQrν 1XmpaY qs.

We first show that βjpanq “ γj logpanq ` oplogpanqq. Consider a sequence an Ñ 8, and assume
without loss of generality that an ą e. Let fnpx, yq “ ν 1x¨mpanyq{ logpanq. Observe that fnpx, yq Ñ

ν 1x ¨ 1ry ą 0s pointwise, since fnpx, 0q “ ν 1x ¨ mp0q{ logpanq Ñ 0, while for y ą 0,

fnpx, yq “ ν 1x ¨
mpanyq

logpanq
“ ν 1x ¨

mpanyq

logpanyq

logpanq ` logpyq

logpanq
Ñ ν 1x,

where we use the fact that mpyq{ logpyq Ñ 1 as y Ñ 8. We showed in the proof to Proposition 4
that

|mpanyq|

logpanq
ď κ ` 2 ¨ 1ry ą 0s ¨ p1 ` | logpyq|q,

which implies that

|fnpx, yq| ď |ν 1x ¨ pκ ` 2 ¨ 1ry ą 0s ¨ p1 ` | logpyq|qq| “: fpx, yq.

Moreover, part 2 of the proposition implies that fpX,Y q is integrable. From the dominated con-
vergence theorem, it follows that

βjpanq

logpanq
“ EQrfnpX,Y qs Ñ EQrν 1X1rY ą 0ss “ γj .
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Hence, we see that βjpanq “ γj logpanq ` oplogpanqq. It follows that |βjpanq| Ñ 8 when γj ‰ 0.
To complete the proof, we show continuity of βjpaq. Fix a P r0,8q, and consider a sequence

an Ñ a. Assume without loss of generality that an ă a ` 1 for all n. Let fnpx, yq “ ν 1x ¨ mpanyq.
From the continuity of m, we have that fnpx, yq Ñ ν 1x ¨ mpayq pointwise. We showed in the proof
to Proposition 1 that there exists some κ (not depending on n) such that

|mpanyq| ď κ ` 21ry ą 0s ¨ | logpyq|.

Hence,
|fnpx, yq| ď |ν 1x ¨ pκ ` 21ry ą 0s| logpyq|q|.

Moreover, the bounding function is integrable over the distribution of pX,Y q by part 2 of the
proposition. Applying the dominated convergence theorem again, we obtain that

βjpanq “ EQrfnpX,Y qs Ñ EQrν 1X ¨ mpaY qs “ βjpaq,

as needed.

Proof of Proposition 7. Consider an Ñ 8. Applying Proposition 6 to the empirical distribution, we
have that β̂panq{ logpanq “ γ̂ ` op1q. It follows that

1

logpanq
ϵ̂ipanq “

mpanYiq

logpanq
´

β̂panq1Xi

logpanq
“ 1rYi ą 0s ´ γ̂1Xi ` op1q “ ûi ` op1q.

Since Ω̂npanq is a continuous function of the ϵ̂ipanq2, we obtain that logpanq´2Ω̂βpanq Ñ Ω̂γ , and
thus that logpanq´1σ̂βj

panq “ σ̂γj ` op1q. It follows that

t̂βj
panq “

β̂jpanq{ logpanq

σ̂βj
panq{ logpanq

“
γ̂j ` op1q

σ̂γj ` op1q
Ñ

γ̂j
σ̂γj

“ t̂γj ,

as needed.

C Connection to structural equations models

Previous work has considered a variety of estimators for settings with zero-valued outcomes begin-
ning with structural equations models rather than the potential outcomes model that we consider.
These papers have reached different results, with some concluding that regressions with arcsinhpY q

have the interpretation of an elasticity, and others showing that they are inconsistent and advocat-
ing for other methods (e.g. Poisson regression) instead. In this section, we interpret the results in
those papers from the perspective of the potential outcomes model, and show that these diverging
conclusions stem from different implicit assumptions about the potential outcomes, as well as a
focus on different causal parameters.

Before discussing specific papers, we first note that, broadly speaking, structural equation models
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can be viewed as constraining the joint distribution of potential outcomes. Observe that, for any
pair of potential outcomes pY p1q, Y p0qq, we can represent them as pY p1, Uq, Y p0, Uqq for some
function Y pd, uq and individual-level unobservable (or “structural error”) U . The potential outcomes
framework we work with in this paper does not impose any functional form assumptions on Y pd, uq.
Structural equation models, on the other hand, tend to specify explicit functional forms for Y pd, uq.
In what follows, we consider the implicit restrictions placed on the potential outcomes as well as
the target estimand in work related work that starts with a structural equations model.

C.1 Bellemare and Wichman (2020) and Thakral and Tô (2023)

Bellemare and Wichman (2020) consider OLS regressions of the form51

arcsinhpY q “ β0 ` Dβ1 ` U. (C.1)

Note that when D is binary and randomly assigned, D KK pY p1q, Y p0qq, then from the perspective
of the potential outcomes model, the population coefficient β1 is the ATE for arcsinhpY q. Bellemare
and Wichman (2020) instead consider the interpretation of β1 when (C.1) is treated as structural,
i.e. if there are constant treatment effects of D on arcsinhpY q. From the perspective of the potential
outcomes model, this amounts to imposing that the potential outcomes Y pdq :“ Y pd, Uq take the
form

arcsinhpY pd, Uqq “ β0 ` dβ1 ` U, (C.2)

where the individual-level random variable U takes the same value for all values of d. Under (C.2),
we have that

β1 “ arcsinhpY p1, Uqq ´ arcsinhpY p0, Uqq.

Since arcsinhpyq « logp2yq for y large, it follows that β1 « logpY p1, Uq{Y p0, Uqq when Y p1, Uq and
Y p0, Uq are large. Thus, Bellemare and Wichman (2020) argue that β1 approximates the semi-
elasticity of the outcome with respect to d when the outcome is large. They likewise provide similar
results for the elasticity of Y pd, Uq with respect to treatment when treatment is continuous. Their
results thus imply that the ATE for arcsinhpY q has a sensible interpretation as a (semi-)elasticity
when the structural equation for the potential outcomes given in (C.2) holds.

It is worth emphasizing, however, that (C.2) will generally be incompatible with the data when
both Y p1q and Y p0q have point-mass at zero, and β1 ‰ 0. Specifically, note that (C.2) implies that
for all values of U ,

arcsinhpY p1, Uqq ´ arcsinhpY p0, Uqq “ β1.

If β1 ą 0, for example, this implies that arcsinhpY p1, Uqq ą arcsinhpY p0, Uqq, and hence Y p1, Uq ą

Y p0, Uq, since the arcsinhpyq function is strictly increasing for y ě 0. However, since Y p0, Uq ě 0

by assumption, this implies that Y p1, Uq ą 0 with probability 1. Thus, the model in (C.2) is
51They also consider specifications with additional covariates on the right-hand side, although we abstract away

from this for expositional simplicity.
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incompatible with P pY p1q “ 0q ą 0 if β1 ą 0. By similar logic, the model is also incompatible with
P pY p0q “ 0q ą 0 if β1 ă 0. In settings where there is point-mass at zero, the model that Bellemare
and Wichman (2020) show gives β1 an interpretation as a semi-elasticity will therefore typically be
rejected by the data. It is also worth noting that even if there are no zeros in the data, the model in
(C.2) will generally be sensitive to units, in the sense that if (C.2) holds for Y measured in dollars,
it will generally not hold when Y is measured in cents. The validity of the interpretation of β1 as
an elasticity thus depends on having chosen the “correct” scaling of the outcome such that (C.2)
holds.

Similar issues apply if we consider alternative transformations on the left-hand side of (C.1).
For example, Thakral and Tô (2023) consider versions of (C.1) that replaces arcsinhpY q with the
power function Y k. They then consider the implied “semi-elasticities” of the form ηpy0q “ β1{pkyk0 q.
The parameter ηpy0q has the interpretation as a structural semi-elasticity when d has a contant
effect on Y k. Specifically, if D is continuous and the structural equation

Y pd, Uqk “ β0 ` dβ1 ` U, (C.3)

holds, then ηpy0q “
`

B
BdY pd, Uq

˘

{Y pd, Uq evaluated at Y pd, Uq “ y0, so ηpy0q corresponds to the
semi-elasticity of Y pd, Uq with respect to d. However, as with (C.2), (C.3) is generally incompatible
with settings in which P pY pd, Uq “ 0q for multiple values of d. For example, if β1 ą 0, then
Y p0, Uq ě 0 implies that Y p1, Uq ą 0. Equation (C.3), which gives a causal interpretation to ηpβ0q

as a semi-elasticity, will thus generally be incompatible with settings in which some units have Y “ 0

under multiple treatment statuses.

C.2 Cohn, Liu and Wardlaw (2022)

Cohn, Liu and Wardlaw (2022) consider structural equations of the form

Y “ exppα ` DβqU. (C.4)

When ErU | Ds “ 1, they show that Poisson regression is consistent for β, whereas regressions of
logp1 ` Y q or logpY q on D may be inconsistent for β.52 Although Cohn, Liu and Wardlaw (2022)
do not consider a potential outcomes interpretation of β, we can give β a causal interpreation if we
impose that the potential outcomes take the form

Y pd, Uq “ exppα ` dβqUpdq, (C.5)

where ErUpdqs “ 1. Under (C.5), it follows that exppβq “ ErY p1qs{ErY p0qs, i.e. the parameter
52We thank Kirill Borusyak for an insightful discussion on this topic. Relatedly, in an influential paper, Santos Silva

and Tenreyro (2006) consider the structural equations model Yi “ exppX 1
iβqUi where ErUi | Xis “ 1, and show that

Poisson regression consistently estimates β while a regression using log on the left-hand side does not, although they
do not provide any formal results on log-like transformations.
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θATE% considered in Section 4.1.53

We note, however, that if one were instead to impose (C.4) with the assumption that ErlogpUpdqq |

Ds “ 0, then the regression of logpY q on D would be consistent for β, whereas Poisson regression
would generally be inconsistent for β. Indeed, under the potential outcomes model in (C.5) with
the assumption that ErlogpUpdqqs “ 0, we have that β “ ErlogpY p1qq ´ logpY p0qqs, the ATE in
logs.54

This discussion highlights that whether or not an estimator is consistent depends on the specifi-
cation of the target parameter. Our results help to illuminate what parameters can be consistently
estimated by enumerating the properties that identified causal parameters can (or cannot) have.

C.3 Tobit models

An alternative structural approach is to explicitly model the extensive margin, a classic example of
which is the Tobit model (Tobin, 1958). Following the discussion of Tobit models in Angrist and
Pischke (2009), suppose there exist latent potential outcomes Y ˚pdq “ µd `U , where U „ N p0, σ2q

and D KK U . The observed potential outcome Y pdq is then the latent potential outcome truncated
at zero, Y pdq “ maxpY ˚pdq, 0q. We note that in this model, the treatment has a constant additive
effect of µ1´µ0 on the latent outcome, and the latent potential outcomes are assumed to be normally
distributed.

Thanks to the parametric assumptions, the unknown parameters µ1, µ0, σ
2 are identified and

estimable via, e.g., maximum likelihood. As a result, the entire joint distribution of potential
outcomes is identified, since this depends only on pµ1, µ0, σq. This implies, in turn, that all of the
possible target parameters considered in Section 4 are point-identified. For example, under this
model

Erlog Y pdq | Y p1q ą 0, Y p0q ą 0s “ E rlog pµd ` Uq | U ą ´µ1, U ą ´µ0s ,

where the right-hand side can be computed numerically since U „ N p0, σ2q. Thus, the intensive
margin treatment effect in logs, θIntensive, is actually point-identified under the Tobit model.55

It is worth nothing that unlike some of the models considered above, the Tobit model is consistent
with a nonzero extensive margin. However, the assumptions of normal errors and constant treatment
effects on the latent index are restrictive. As discussed in Section 4, imposing these assumptions
is not necessary for identification if one is ultimately interested in, say, ErY p1q ´ Y p0qs{ErY p0qs,
and one can obtain bounds on the intensive margin effect without imposing these assumptions.56

Moreover, as Angrist and Pischke (2009) and Angrist (2001) point out, it is often not clear what
the economic meaning of the latent potential outcome Y ˚pdq is—if Y pdq is earnings, for example,

53Bellégo, Benatia and Pape (2022) also consider (C.4), but consider the more general class of identifying restrictions
of the form ErD logpU ` δqs “ 0, where δ is a tuning parameter.

54Note that the assumption that ErlogpUqs “ 0 implicitly implies that U ą 0, and thus Y ą 0.
55Likewise, the intensive margin treatment effect in levels, ErY p1q ´ Y p0q | Y p1q ą 0, Y p0q ą 0s is simply µ1 ´ µ0.
56We note that the assumptions of the Tobit model imply (but are strictly stronger than) the assumption of rank

preservation of the potential outcomes. However, rank preservation alone suffices to point identify Erlog Y p1q ´

log Y p0q | Y p1q ą 0, Y p0q ą 0s.
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what is the meaning of having negative latent earnings (Y ˚pdq ă 0)?

D Connection to two-part models

One approach recommended for settings with weakly-positive outcomes is to estimate a two-part
model (Mullahy and Norton, 2023). In this section, we briefly review two-part models, and show
that the marginal effects implied by these models do not correspond with ATEs for the intensive
margin without further restrictions on the potential outcomes. Thus, while two-part models strike
us as a reasonable approach if the goal is to model the conditional expectation function of observed
outcomes Y given treatment D (as in Mullahy and Norton (2023)), they will often not be appropriate
if instead the goal is to learn about a causal effect along the intensive margin.57

The idea of a two-part model is to separately model the conditional distribution Y | D using (a)
a first model for the probability that Y is positive given D, P pY ą 0 | Dq (b) a second model for
the conditional expectation of Y given that it is positive, ErY | D,Y ą 0s. Common specifications
include logit or probit for part (a), and a linear regression of the positive values of Y on D for part
b); see, e.g., Belotti et al. (2015). After obtaining estimates of the two-part model, it is common to
evaluate the marginal effects of D on both parts, i.e. the implied values of

τa “ P pY ą 0 | D “ 1q ´ P pY ą 0 | D “ 0q

τb “ ErY | Y ą 0, D “ 1s ´ ErY | Y ą 0, D “ 0s.

We now consider how the parameters of the two-part model relate to causal effects in the
potential outcomes model. Suppose, for simplicity, that the two-part model is well-specified, so
that it correctly models P pY ą 0 | Dq and ErY | Y ą 0, Ds. Suppose further that D is randomly
assigned, D KK Y p1q, Y p0q. In this case, we have that

τa “ P pY p1q ą 0q ´ P pY p0q ą 0q

τb “ ErY p1q | Y p1q ą 0s ´ ErY p0q | Y p0q ą 0s.

From the previous display, we see that the marginal effect on the first margin, τa, has a causal
interpretation: it is the treatment’s effect on the probability that the outcome is positive.

The interpretation of the marginal effect on the second margin, τb, is more complicated, however.
For simplicity, suppose are willing to impose the “monotonicity” assumption discussed in Section 4,
P pY p1q “ 0, Y p0q ą 0q “ 0, so that anyone with a zero outcome under treatment also has a zero
outcome under control. Then, letting α “ P pY p0q “ 0 | Y p1q ą 0q, we can write τb as

τb “ p1 ´ αqErY p1q | Y p1q ą 0, Y p0q ą 0s

` αErY p1q | Y p1q ą 0, Y p0q “ 0s ´ ErY p0q | Y p1q ą 0, Y p0q ą 0s

57We are particularly grateful to John Mullahy for an enlightening discussion of this topic.
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“ ErY p1q ´ Y p0q | Y p1q ą 0, Y p0q ą 0s
loooooooooooooooooooooooomoooooooooooooooooooooooon

Intensive margin effect

` α pErY p1q | Y p1q ą 0, Y p0q “ 0s ´ ErY p1q | Y p1q ą 0, Y p0q ą 0sq
looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

Selection term

,

where the first equality uses iterated expectations, and the second re-arranges terms.
The previous display shows that τb is the sum of two terms. The first is the ATE for individuals

who would have a positive outcome regardless of treatment status (similar to θIntensive in Section 4,
except using Y instead of logpY q). The second term is not a causal effect, but rather represents
a selection term: it is proportional to the difference in the average value of Y p1q for “compliers”
who would have positive outcomes only under treatment versus “always-takers” who would have
positive outcomes regardless of treatment status. In many economic contexts, we may expect this
selection effect to be negative. For example, we may suspect that individuals who would only get
a job if they receive a particular training have lower ability, and hence lower values of Y p1q, than
individuals who would have a job regardless of training status. The marginal effect τb thus only has
an interpretation as an ATE along the intensive margin if either (a) there is no extensive margin
effect (α “ 0) or (b) we are willing to assume that the selection term is zero. Angrist (2001)
provided a similar decomposition (without imposing monotonicity), concluding that the two-part
model “seems ill-suited for causal inference,” at least without further restrictions on the potential
outcomes. See, also, Mullahy (2001) for additional discussion.

E Details on Lee bounds using IV in Berkouwer and Dean (2022)

We now describe in detail our approach for constructing Lee (2009)-type bounds in the IV setting
of Berkouwer and Dean (2022).

Estimating the instrument-complier distributions. The first step is to estimate the distri-
bution of Y p0q and Y p1q for instrument-compliers. As shown in Abadie (2002), the CDF for Y p1q

for instrument-compliers at a point y can be consistently estimated by using two-stage least squares
to estimate the effect of treatment on the outcome Di1rYi ď ys. The CDF for Y p0q for instrument-
compliers can analogously be obtained using the outcome pDi ´ 1q1rYi ď ys. We estimate these
TSLS regressions using analogues to (11) (except replacing arcsinhpYiq with the outcomes just de-
scribed) for all values of y contained in the data. We thus obtain empirical estimates of the CDFs
for instrument-compliers, F̂Y pdqpyq for d “ 0, 1.

Constructing bounds. Note that if U „ U r0, 1s, then Y pdq „ F´1
Y pdq

pUq, where F´1
Y pdq

puq :“

infty | FY pdqpyq ě uu. With this formulation in mind, Lee (2009)’s bounds for ErlogpY p1qq | Y p1q ą

0, Y p0q ą 0s can be written as

ErlogpF´1
Y p1q

pUqq | U P rθNT , θNT ` θAT ss ď ErlogpY p1qq | Y p1q ą 0, Y p0q ą 0s
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ď ErlogpF´1
Y p1q

pUqq | U P r1 ´ θAT , 1ss, (E.1)

where θAT “ P pY p1q ą 0, Y p0q ą 0q, θNT “ P pY p1q “ 0, Y p0q “ 0q, and θC “ P pY p1q ą

0, Y p0q “ 0q. We estimate the bounds in (E.1) by plugging in the estimated CDFs for instrument-
compliers described above, as well as the values of θAT , θNT , θC implied by the estimated CDFs. We
approximate the expectation over U by taking the average over 100,000 uniform draws.58 Finally,
to compute the bounds on the treatment effect, we must estimate ErY p0q | Y p0q ą 0s. To do this,
we use the fact that

ErY p0q | Y p0q ą 0s “ ErF´1
Y p0q

pUq | U P rθNT ` θC , 1ss.

As before, we then estimate the right-hand-side in the previous display by plugging-in the estimated
CDF for instrument-compliers, and simulating over 100,000 uniform draws. The Lee bounds for
θIntensive are then obtained by subtracting the estimate of ErY p0q | Y p0q ą 0s from the estimates
of the lower and upper bounds in (E.1). We estimate standard errors for the bounds using 1,000
draws from a non-parametric clustered bootstrap.59

F Appendix Tables and Figures

– Appendix Table 1 contains information on the AER papers discussed.

– Appendix Figure 1 shows how t-statistics change in the replication exercise.

– Appendix Table 2 shows the analogue of Table 1 for logp1 ` Y q.

58We note that in finite samples, the estimated CDF F̂Y pdqpyq may be non-monotonic. Nevertheless, the inverse
F̂´1
Y pdq

puq :“ infty | F̂Y pdqpyq ě uu remains well defined.
59One complication that arises is that for some draws from the bootstrap distribution, the sign of the extensive

margin can be the opposite of that in the original data. In our bootstrap procedure, we construct Lee-type bounds
assuming monotonicity in whichever direction matches the bootstrapped data. The resulting bootstrap estimates of
the bounds appear to be approximately normally distributed, but we think a formal theoretical evaluation of the
bootstrap in this setting is an interesting topic for future work.
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Paper Interprets Units as
%

Original Units Quote About Percents / Notes

Azoulay et al (2019) Yes Publications (yearly) “In this case, coefficient estimates can be interpreted as elas-
ticities, as an approximation.”

Beerli et al (2021) Yes Patent applications (yearly) “The estimates thus reflect an approximate percentage in-
crease.”

Berkouwer and Dean (2022) Yes Weekly expenditure (dollars) “A 0.50 IHS reduction corresponds to a 39 percent reduction
relative to the control group.”

Cabral et al (2022) Yes Costs (dollar) per $10K risk-adjusted covered payroll Refers to estimates as “the elasticities reported in panel A”
Carranza et al (2022) Yes Hours worked (weekly) “Weekly earnings increase by 34% (Table 1, column 3)”
Faber & Gauber (2019) Yes Municipality GDP (1000s of Pesos) “A one standard deviation increase in tourism attractiveness

increases local manufacturing GDP by about 40 percent.”
Hjort and Poulsen (2019) Yes KB per second “We find that cable arrival increases measured speed in

connected locations, relative to unconnected locations, by
around 35 percent”

Johnson (2020) Yes Violations (monthly) “[T]he regression coefficient estimates the ITT effect of a
press release on the percent change in the number of viola-
tions. The point estimate (-0.18) is identical to the baseline
estimate in percent terms -0.40/2.29 = 17.5%).”

Mirenda et al (2022) Yes Contract size (euros) “The amount of public funds awarded raises by 3.4 percent.”
Norris et al (2021) Yes Criminal charges “We measure both the extensive margin (using a binary in-

dicator for the outcome ever occurring) and the intensive
margin (taking the inverse hyperbolic sine, IHS, of the num-
ber of times the outcome occurred, so the coefficient is in-
terpreted as a percent change)”

Ager et al (2021) No interpretation Wealth (1870 dollars)
Arora et al (2021) No interpretation Publications (yearly)
Bastos et al (2018) No interpretation Sales (yearly, euros)
Fetzer et al (2021) No interpretation Incidents (quarterly)
Moretti (2021) No interpretation Patents (yearly)
Rogall (2021) No interpretation Perpetrators
Cao and Chen (2022) No Rebellions per million population in 1600 They compute exppβ̂q´1 and multiply by the baseline mean,

then interpret this as the effect in levels

Appendix Table 1: Papers in the AER estimating effects for arcsinhpY q with selected quotes

Note: this table lists papers in the AER estimating treatment effects for arcsinhpY q. The second column classifies papers by whether they interpret the units of
the treatment effect as a percent/elasticity, with categories “yes”, “no”, or “no interpretation given.” The third column describes the units of the outcome before
applying the arcsinh transformation, and the final column provides selected quotes and notes about the interpretation of the estimates. See Section 2.3 for details.
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Appendix Figure 1: t-statistics for effect on arcsinhpY q, versus extensive margin t-statistic
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Note: this table shows the t-statistic for the extensive margin effect on the x-axis, and the t-statistic for the treatment
effect using arcsinhpY q on the y-axis. The circle shows the t-statistic using the original units, whereas the arrow shows
the change if we first multiply the units by 100 before applying the arcsinh transformation. We omit two papers
where there is no extensive margin. The plot shows that the t-statistics are close to the 45 degree line when the
extensive margin is not close to zero, and tend to become closer when the units are made larger.
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Treatment Effect Using: Change from
rescaling units:

Paper logp1 ` Y q logp1 ` 100 ¨ Y q Ext. Margin Raw %

Azoulay et al (2019) 0.002 0.015 0.003 0.012 529
Fetzer et al (2021) -0.138 -0.410 -0.059 -0.272 197
Johnson (2020) -0.139 -0.408 -0.057 -0.269 194
Carranza et al (2022) 0.166 0.415 0.055 0.249 149
Cao and Chen (2022) 0.032 0.076 0.010 0.044 136
Rogall (2021) 1.109 2.015 0.195 0.906 82
Moretti (2021) 0.041 0.067 0.000 0.026 64
Berkouwer and Dean (2022) -0.412 -0.484 0.010 -0.072 17
Arora et al (2021) 0.110 0.111 -0.001 0.001 1
Hjort and Poulsen (2019) 0.354 0.354 0.000 0.001 0

Appendix Table 2: Change in estimated treatment effects using logp1 ` Y q from re-scaling the
outcome by a factor of 100 in papers published in the AER

Note: this table repeats the exercise in Table 1 but replacing arcsinhpY q with logp1`Y q as the outcome in the second
column, and arcsinhp100Y q with logp1`100Y q in the third column. The fourth column shows the estimated extensive
margin effect, which is identical to the fourth column of Table 1. The final two columns show the raw difference and
percentage difference between the second and third columns. The rows are sorted based on the percentage differences.
Among the papers surveyed, which by construction report at least one specification using arcsinhpY q, Arora, Belenzon
and Sheer (2021); Fetzer et al. (2021); Moretti (2021); Rogall (2021) also report specifications that contain logp1`Y q

on the left-hand side, and Johnson (2020) reports a specification with logpc`Y q on the left-hand side, where c is the
first nonzero percentile of the distribution of the observed outcome variable.
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