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Researchers employing a difference-in-
differences (DiD) design are often unsure
about the validity of the parallel trends as-
sumption. It is common to test for “pre-
trends”, yet such tests may be underpow-
ered, and relying on them leads to statis-
tical issues from pre-testing (Roth, 2022).
Recent work by Manski and Pepper (2018)
and Rambachan and Roth (2023, RR) has
made progress on obtaining more credi-
ble inference when parallel trends may be
violated by adopting a partial identifica-
tion approach. In RR, for example, the
researcher places bounds that restrict the
possible values of the post-treatment viola-
tions of parallel trends δpost given the iden-
tified pre-treatment violations δpre. The
identified set for the treatment effect then
corresponds to the worst-case bounds for
δpost given the observed δpre.

We instead consider a Bayesian approach
where the researcher imposes a prior on
the violations of parallel trends δ. The re-
searcher then updates their posterior about
δpost given the observed estimate of δpre.
This allows them to form posterior means
and credible sets (CSs) for the treatment
effect τpost. The Bayesian approach allows
the researcher to impose ex ante informa-
tion about what violations of parallel trends
may look like, and thus to potentially ob-
tain more informative results than the par-
tial identification approach using worst-case
bounds. It also allows one to form point es-
timates in addition to confidence sets. For
settings with many pre-treatment periods,
we also consider empirical Bayes (EB) ap-
proaches, where the “prior” for the viola-
tions of parallel trends is calibrated using
the pre-trends.
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I. Set-up

Following RR, we consider a setting
where the researcher observes a vector of
event-study estimates β̂ = (β̂′

pre, β̂
′
post)

′ ∈
R¯

T+T̄ corresponding to
¯
T pre-treatment

and T̄ post-treatment periods. Motivated
by asymptotics based on the central limit
theorem, we suppose that β̂ is normally
distributed with known variance, β̂ ∼
N

(
β, Σβ̂

)
, where

(1) β =

(
0

τpost

)
+

(
δpre
δpost

)
.

The vector τ corresponds to the treatment
effect in each period (assumed to be zero
prior to treatment, τpre = 0), while δ corre-
sponds to a vector of biases (e.g. violations
of parallel trends). RR consider restrictions
that impose that δ ∈ ∆. This enables par-
tial identification of τ , with bounds corre-
sponding to worst-case assumptions on the
element δ ∈ ∆. In this paper, we alter-
natively consider Bayesian inference where
the researcher places a prior on δ, as well
as Empirical Bayes approaches where the
prior on δpost is calibrated using δpre.

II. Fully Bayesian Approach

We impose a prior πτ,δ(·) over τ, δ.1 From
Bayes’ rule, we have that

p(τ, δ | β̂) ∝ ℓ(β̂ | δ + τ) · πτ,δ(τ, δ),

1For notational convenience, in this section we write

τ for a vector of the form (0, τ ′post)
′.
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where ℓ(β̂ | β) denotes the normal like-

lihood of observing β̂ given β̂ | β ∼
N

(
β, Σβ̂

)
. Consequently,

p(τ | β̂) =
∫

p(τ, δ | β̂) dδ

∝
∫

ℓ(β̂ | δ + τ) · πτ,δ(τ, δ) dδ

Thus, given a prior πτ,δ it is straightforward

to compute the posterior p(τ | β̂).
In what follows, we will primarily con-

sider the case where the researcher has an
uninformative prior on τ | δ, so that πτ |δ(τ |
δ) ∝ 1, in which case

p(τ | β̂) ∝
∫

ℓ(β̂ | δ + τ) · πδ(δ) dδ.

The following result characterizes the
posterior mean for τpost when the prior is
uninformative.

PROPOSITION 1: If the prior for τ is
uninformative (i.e. πτ |δ ∝ 1), then

E[τpost | β̂] =
E[βpost | β̂]− E[E[δpost | δpre = βpre] | β̂]︸ ︷︷ ︸

=E[δpost|β̂]

Proposition 1 shows that the posterior
mean for τpost is simply the difference be-
tween the posterior for βpost and the poste-
rior for δpost. It shows further that the pos-
terior for δpost can be written as an iterated
expectation, where the inner expectation is
based on the conditional prior of δpost given
δpre, and the outer expectation is over the

posterior for βpre | β̂.
It is worth noting that the expression

for E[τpost | β̂] derived in Proposition 1
depends on the conditional prior on the
post-treatment bias δpost given the pre-
trend δpre, regardless of the precision of

the estimates β̂. This reflects the well-
known fact that in partially identified set-
tings, the prior matters even asymptoti-
cally. Researchers adopting this approach
must therefore be careful to choose a prior
that reflects economic information about
the possible violations of parallel trends.

Example: Gaussian Prior

Suppose we have a Gaussian prior for δ,
δ ∼ N (µδ, Vδ) and impose the uninforma-
tive prior for τ . A straightforward calcula-
tion using Bayes’ rule shows that the poste-
rior for τpost is also Gaussian. To derive the
posterior mean, note that the formula for
the conditional mean of a Gaussian vector
implies that

E[δpost | δpre] = µδpost + Γ′
V (δpre − µδpre),

for ΓV = V −1
δpre

Vδpre,δpost . Applying Proposi-
tion 1,

E[τpost | β̂] = β∗
post−µδpost−Γ′

V (β
∗
pre−µδpre),

where β∗ = E[β | β̂] is the posterior mean
for β.
One can further show that the posterior

mean for βpre is

β∗
pre = (Σ−1

β̂pre
+ V −1

pre )
−1(Σ−1

β̂pre
β̂pre + V −1

preµδpre),

which “shrinks” the point-estimate β̂pre to-
wards the prior mean µδpre . Likewise, the
posterior mean for βpost is

β∗
post = β̂post − Γ′

Σ(β̂pre − β∗
pre)

for ΓΣ = Σ−1

β̂pre
Σβ̂pre,β̂post

. See the Online

Appendix for detailed calculations, a for-
mula for the posterior variance of τpost, and
an extension to the case with an uninfor-
mative Gaussian prior on τpost.

Empirical Illustration

Benzarti and Carloni (2019, BZ) study
the impacts of a reduction in the value-
added tax on restaurants in France. They
run a non-staggered DiD design compar-
ing profits for restaurants to those of firms
in other industries not affected by the tax
change. The key concern with this ap-
proach is that there might be idiosyncratic
economic factors affecting the profits of
restaurants that do not affect other indus-
tries, which would lead to violations of par-
allel trends. We calibrate our prior on
these violations using McGahan and Porter
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(1999), who estimate an AR(1) process for
the industry-level component of firm prof-
its (see the Online Appendix for detail). We
take their estimates of the AR(1) parame-
ters and assume that the AR(1) innovations
are from a mean-zero Gaussian, which im-
plies a Gaussian prior for the violations of
parallel trends. The figure below shows the
original OLS estimates and confidence in-
tervals (CIs) from BZ, as well as posterior
means and 95% CSs from our Bayesian ap-
proach.

The posterior CSs are wider than the
OLS CIs, since the OLS CIs assume that
parallel trends holds exactly, whereas our
prior puts positive weight on violations of
parallel trends. Nevertheless, the CSs are
informative, excluding zero in 3 out of
4 post-treatment periods. The posterior
means are also somewhat closer to zero than
the OLS estimates. This is because δpre
and δpost are correlated under the imposed
prior; thus, the primarily positive estimates
for β̂pre lead to a posterior that the post-
treatment bias δpost is positive.

III. Empirical Bayes Approaches

We saw in the previous section that the
conditional prior δpost | δpre matters regard-
less of the precision of the event-study es-
timates β̂. This conditional prior governs
how violations of parallel trends evolve over
time. In settings where we have many pre-
treatment periods, and we think that the
violations of parallel trends come from a
stationary process, it might be attractive
to learn the time-series dependence of viola-
tions of parallel trends from the pre-trends.
This motivates an EB approach where the

parameters of the time series process for vi-
olations of parallel trends are learned from
the pre-trends, and posterior estimates are
then calculated based on the prior implied
by the estimated parameters.

As a simple illustration, suppose that
violations of parallel trends across con-
secutive periods are governed by wt :=

δt − δt−1
iid∼ N (µ, σ2). In a simple non-

staggered DiD, this corresponds to the case
where the idiosyncratic factors differentially
affecting the treated group follow a Gaus-
sian random walk with drift. Let wpre =
(w−

¯
T+1, ..., w0)

′ collect the pre-treatment
values of wt. Analogously define the vec-
tor ŵpre to collect the estimate of wpre us-

ing β̂pre instead of δpre. Then we have that
ŵpre ∼ N (µ · 1, Σw + σ2I), where 1 is the
vector of ones, and Σw = MΣβ̂pre

M ′ for M

the matrix such that ŵpre = Mβ̂pre. The
parameters µ and σ2 can thus be estimated
via maximum likelihood, which will be con-
sistent (under mild regularity conditions on
Σw) as the number of pre-treatment periods
grows large,

¯
T → ∞. Since the assumption

that wt
iid∼ N (µ, σ2) implies a normal prior

for δ,2 it is straightforward to calculate the
posterior for τpost using the prior implied by
the estimates µ̂, σ̂.

One caveat to this approach is that the
consistency of the estimates for the prior
depends on the number of pre-treatment
periods

¯
T being large. In practice, the

number of pre-treatment periods may be
moderate—e.g., in our empirical applica-
tion below, it is 9—in which case estimates
based on this approach must be interpreted
with some caution. We note that an alter-
native to the EB approach when the num-
ber of periods is moderate is to consider
a hierarchical Bayes model, where one im-
poses a hyper-prior on the parameters µ, σ2

and then updates their prior based on the
observed estimate of β̂pre. This approach
retains validity even when µ̂, σ̂ are only im-
precisely estimated, but of course requires
the researcher to specify a prior on the
hyper-parameters.

2We adopt the common normalization that δ0 = 0,
which allows us to infer the distribution of δ from w.
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Empirical Illustration

Lovenheim and Willén (2019) study how
being exposed to laws that increase the
power of teachers’ unions as a student im-
pacts earnings in adulthood. They use
a two-way fixed effects event-study spec-
ification exploiting the differential timing
of the passage of these laws.3 The con-
cern with the parallel trends assumption is
that states passing these laws may have dif-
ferent secular trends in labor market out-
comes. To address this, we suppose that

wt
iid∼ N (µ, σ2), and estimate the param-

eters µ, σ using maximum likelihood based
on the pre-trends.

Using female employment (in p.p.) as
the outcome, we estimate µ̂ = −0.24, σ̂ =
0.61, indicating a downward-sloping pre-
trend and some variance around it. Be-
cause of the prior that the violation of par-
allel trends is downward sloping, the pos-
terior means for the treatment effects are
substantially closer to zero than the OLS
estimates (see figure above). The CSs are
also substantially wider than the OLS CIs,
especially in later post-treatment periods,
owing to uncertainty about the violations
of parallel trends.
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